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Zusammenfassung:

Die vorliegende Arbeit behandelt ein Modell zur Entstehung und Beschleunigung von
ultra-relativistischen Jets in der Umgebung rotierender Schwarzer Löcher. Das Mo-
dell basiert auf der Kombination von Teillösungen drei verschiedener Bereiche: die
innere und äußere Region der Akkretionsscheibe, sowie der darüberliegende Transition
Layer. Das ermöglicht die Konstruktion globaler Konfigurationen, die Jets enthalten.
Zugrunde gelegt werden Lösungen der zeitunabhängigen, 3D achsensymmetrischen,
allgemein-relativistischen, dissipativen und strahlenden Gleichungen der Magnetohy-
drodynamik. Aufgrund starker Verluste von Rotationsenergie durch magnetische Brem-
sung kollabiert der Plasmafluss im inneren Bereich der Scheibe dynamisch. Dort strahlt
die Scheibe nicht im Röntgen- aber umso stärker im Radiobereich. Die starken Mag-
netfelder transportieren die Rotationsenergie in eine stark dissipative, dünne Schicht
(Transition Layer) zwischen der Akkretionsscheibe und der darüberliegenden Korona.
Dort rotiert das Plasma super-keplersch, wird nach außen beschleunigt und erreicht
ultra-relativistische Geschwindigkeiten. Da in der unmittelbaren Nähe des Schwarzen
Lochs die Zeitskala der Coulomb-Kopplung die dynamische Zeitskala überschreitet, en-
tkoppeln die Protonen und Elektronen thermisch und Zwei-Temperatur-Jets entstehen.
Das Modell wird auf den Jet des µQuasars GRS1915+105 angewandt und es stellt sich
heraus, dass nur ein sehr schnell rotierendes Schwarzes Loch mit den Beobachtungs-
daten verträglich ist.

Abstract:

In this thesis a model for the formation and acceleration of ultra-relativistic jets in the
vicinity of rotating black holes is presented. The model is based on matching the solu-
tions of three different regions, namely the outer and inner disk regions together with
the overlying transition layer. This enables the construction of global jet-configurations,
that rely on the reformulation of the time independent, general relativistic, radiative
and dissipative magnetohydrodynamic equations in 3D axisymmetry. The plasma in
the innermost region of the disk undergoes a dynamical collapse due to the extensive
loss of rotational energy through magnetic breaking, where the disk ceases to radiate
in the soft X-ray band, but extensively in the radio band. The strong magnetic fields
deposit the rotational energy in a highly dissipative thin layer between the disk and the
overlying corona, where the plasma is set to rotate super-Keplerian and starts to ac-
celerate outwards to reach ultra-relativistic speeds. As the dynamical time scale in the
vicinity of the black hole is much shorter than the Coulomb one, the protons decouple
thermally from the electrons, giving rise to two-temperature jets. When applying the
model to the jet in the µQuasar GRS1915+105, it is found that the accreting object
must be a rapidly rotating black hole in order to agree with observations.
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Preface

Astrophysical jets have been observed to emanate from many astronomical sys-
tems such as around young stellar objects, in binary systems containing compact
objects as well as in active galactic nuclei and quasars. Based on astronomical
data and theoretical studies, the formation of jets in such systems is considered
to be intimately connected to the accretion phenomena. These data reveal that
the very collimated and fast propagating jets are found to emanate from systems
containing black holes with some sort of correlation to their mass.
In fact a lot of theoretical effort has been made to explain the jet-disk or jet-
black hole connections, while the nature of the interaction between the black
hole, jet and disk is still not fully investigated. A conclusive understanding of
this interaction would require carrying out full three-dimensional, general rela-
tivistic, time-dependent, radiative magnetohydrodynamic calculations of multi-
component, dissipative plasmas and using the multi-temperature description,
which is beyond the scope of the present thesis. Instead, this work is concerned
with the extension of the Newtonian model of Hujeirat et al. (2002, 2003); Hu-
jeirat (2003, 2004) into the general relativistic regime. Such an extension is
necessary, since the concerned region of interaction is located in the vicinity of
the event horizon, where general relativistic effects are most prominent. Having
performed these modifications, the model is readily applicable for studying the
formation and acceleration of ultra-relativistic jets in micro-quasars and in active
galaxies. In this thesis, a particular attention will be given to the application of
the modified model to the µQuasar GRS1915+105. This is a binary system con-
taining an accreting stellar-mass black hole; the first source observed to launch
jets with apparent superluminal motion in our galaxy.

The first chapter contains a general introduction to jets in astrophysics. One
section is dedicated specifically to GRS1915+105. This object displays a very
complicated behavior and will play a major role in the last chapter of this the-
sis. In the second chapter we give a short review of the standard disk model of
Shakura and Sunyaev in its Newtonian formulation. It represents the environ-
ment, i.e. the boundary conditions of the inner region where jets are formed.
Further, introducing the equations governing accretion flows in the relatively
simple Newtonian form will be more convenient for the reader. The whole third



chapter is dedicated to the generalization of these equations to the general rela-
tivistic regime.
The fourth chapter is dedicated to the derivation of the new model. First, the
equations derived at the end of the previous chapter are specified to the problem
of an axisymmetric, time independent flow. Then we are ready to focus on the
actual subject of this thesis. First the whole scenario is described qualitatively
in order to point out what the model problem is and what assumptions we im-
pose. A long section is dedicated to the quantitative derivation of the model. In
the fifth and last chapter we give a discussion of the results we have obtained
and of the general properties of the model. Furthermore, we apply the model to
the µQuasar GRS1915+105 by fitting it to observational data. This allows for
restrictions on the free parameters of the model.



Chapter 1

Introduction

In the first section of this chapter we give a short review of the existing models
for jet formation. We point out why the formulation of a new model is necessary.
The following section is dedicated to a general introduction of astrophysical jets,
including their phenomenology and the basic conclusions about their origin. A
specific emphasis is given to the µQuasar GRS1915+105 in the third section,
since it will be subject to the application of our model.

1.1 The Necessity for a New Model

The aim of this diploma thesis is to present a model for the formation and ac-
celeration of highly relativistic jets around black holes. The emphasis is on black
hole accreting systems, although the model is also applicable to other systems
such as accreting neutron stars, white dwarfs or YSO’s. Several models for jet
formation have been proposed in the past. They capture some partial aspects,
while the whole scenario is not well described. Five representatives are discussed
here in order to illustrate the problematics that one has to deal with:

The Blandford-Znajek process (BZ-process, 1977): The model de-
scribes the formation and acceleration of electron-positron pairs produced in a
force-free magnetosphere of a rotating black hole. If poloidal magnetic fields of
sufficient strength are generated in an accretion disk surrounding the black hole,
the induced poloidal electric fields make the vacuum unstable to cascade pair
production. These in turn produce a toroidal magnetic field by induced currents
floating along the poloidal magnetic field lines and inside the accretion disk. The
escaping particles are accelerated along the field lines and thus extract angular
momentum from the disk. If field lines penetrate the event horizon of the black
hole, the electric circuit is closed by an effective current floating on the horizon
and angular momentum is extracted from the black hole itself. This is possible
since a particle can have negative energy in the ergosphere of a rotating black

15



16 CHAPTER 1. INTRODUCTION

hole. The BZ-process is most efficient when the poloidal field lines rotate with
half of the angular velocity of the horizon. Since the outflow is pair dominated in
this model, the mass-loss is very low compared to the accretion rate. However,
it has been argued that the contribution of the hole is unlikely to dominate over
the contribution of the disk (Livio et al., 1999; Hujeirat, 2004). This is due to
the fact that the strength of magnetic fields penetrating the disk should be of the
same order as the fields penetrating the horizon while the disk matter is a much
better conductor.
The model describes only pair dominated outflows whereas outflows consisting of
disk matter would be proton dominated. Therefore the BZ-process only gives a
complete picture when there is no contribution from the disk.

The Blandford and Payne model (1982): In this model energy is removed
from an accretion disk by means of large-scale, poloidal magnetic fields that pen-
etrate through the disk and extend to large distances. The disk is treated as a
Keplerian rotating standard disk (see Section 2.2) and the magnetic field adopts

the profile B ∝ r−
5
4 . If the angle between the field lines and the disk surfaces

is less than 60◦, centrifugal forces can drive an outflowing wind along the rigidly
rotating field lines. The wind is associated with a magnetic field that is pre-
dominantly toroidal at infinity and collimates the outflow into a jet. However,
the poloidal field will induce Lorentz-forces in the radial direction, causing the
matter to rotate slightly sub-Keplerian. This makes it unlikely that plasma can
be ejected by pure centrifugal forces. It has been argued that there is still a
potential barrier that can only be overcome if the thermal energy of the plasma
is sufficiently high (see Ogilvie and Livio, 2001, and references therein). Last but
not least, the accretion disk is assumed to be a standard disk, while magnetic
fields are in excess of thermal equipartition. The magnetic fields will likely sup-
press the generation of turbulence and viscous dissipation, changing the nature
of the accretion flow significantly from a standard disk (see Hujeirat et al., 2003).

The X-wind model (Shu et al., 1994): This model is designed to de-
scribe the formation of jets around young stellar objects. Stellar magnetic fields
are shielded by currents running through the surfaces of the accretion disk except
for a small range of radii around the radius rX , where the disk rotates with the
same angular velocity as the star: ΩX = Ω∗. For magnetospheres of typical T
Tauri stars, rX is of the order of several stellar radii. Interior to rX matter is
funneled down dynamically along the field lines onto the star. Exterior to rX the
field lines bow outward. Their rigid rotation makes matter attached to them ro-
tate at super-Keplerian velocities (like in the Blandford and Payne model). The
mass-loss rate Ṁw can become close to the accretion rate Ṁd.
The magnetic fields responsible for the formation of the wind are not generated in
the disk but inside the central star. Such a scenario is not applicable to AGN or
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µQuasars, since black holes do not possess dynamically stable, poloidal magnetic
fields. Further, the magnetic fields are in super-equipartition with the potential
energy at rX and therefore gravitationally unbound. It is therefore likely that
they float to the surface of the star on the dynamical time scale (Hujeirat et al.,
2003).

Advection-dominated inflow outflow solutions (Blandford and Begel-
man, 1999, ADIOS, ): ADIOS are a special case of ADAF (advection-dominated
accretion flows, see e.g. Narayan and Yi, 1995). The basic assumption of ADAF
is that the cooling of electrons is ineffective. A large fraction of the energy is
stored as entropy in the accreting plasma and advected with the flow. In such a
scenario the plasma has positive energy and is potentially unbound. In ADIOS
only a small fraction of the inflowing mass is actually accreted and the accretion
rate adopts the profile Ṁ ∝ rp, p ∈ [0, 1]. The restriction on p is chosen such
that the accretion rate can decrease inwards, while the energy increases.
If there is efficient electron cooling, ADIOS as well as ADAF is not applicable.
Since electrons cool very efficiently by synchrotron emission, this rules out the
presence of strong magnetic fields. However, relativistic jets are associated with
radio emission which is interpreted as synchrotron radiation. This indicates the
presence of magnetic fields in the jet plasma. They are believed to play a major
role in the collimation of the outflows into jets. Magnetic fields are not treated
explicitly in this model but enter only implicitly through the α-parameter (see
Shakura and Sunyaev, 1973).
The application of the model to the galactic center shows that ADIOS fits
marginally, especially in the radio regime (Yuan et al., 2002). Further, there
is the question where the transition between the standard disk and ADAF oc-
curs. At large distance to the center, there is no heating mechanism that could
turn the flow to ADAF, i.e. we expect it to be a cold standard disk. In the vicin-
ity of the black hole, on the other hand, ADAF has been found to be thermally
unstable (Hujeirat and Camenzind, 2000a).

Truncated disks - advective tori (TDAT Hujeirat and Camenzind,
2000b): This model relies on numerical calculation of radiative hydrodynamics.
It investigates the importance of the two-temperature description of accretion
flows around black holes. According to this model, the disk truncates close to
the marginally stable orbit, where an ion-dominated, advective torus is formed.
Thermally-induced, two-temperature outflows occur in a layer, the transition
layer, between the disk and the overlying corona. Incorporating large-scale mag-
netic fields leads to a super-Keplerian rotating, highly diffusive transition layer,
where a thermally dominated outflow of magnetized, virial heated ion-electron
plasma is launched (Hujeirat et al., 2002). Based on 3D axisymmetric, quasi-
stationary magnetohydrodynamic calculations, including magnetic and hydrody-
namic diffusion, Hujeirat et al. (2002) have found that: 1.) The angular velocity
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in the transition layer adopts the profile Ω ∝ r−
5
4 . 2.) Ions cool predominantly

in fast outflows by adiabatic cooling. 3.) The generated toroidal field partially
heats the transition layer by reconnection, while another part is advected with
the outflow. An outflow rate of about 5% of the accretion rate has been obtained.

The model proposed in this diploma thesis is based on the models of Hujeirat
et al. (2002, 2003) and Hujeirat (2003, 2004) which base on and are a further
development of TDAT. It shares the main features (points 1-3) of TDAT, in-
cluding a two-temperature description of the outflowing wind. Magnetic fields
are explicitly taken into account. It gives a precise, analytic description of the
processes that lead to the formation of the transition layer. This is achieved by
solving the general relativistic, stationary and axisymmetric magnetohydrody-
namic equations. The transition between the model and the SSD, governing the
exterior, occurs at the radius rtr. rtr is taken to be the point where large-scale,
poloidal magnetic fields are in equipartition with the thermal energy. The for-
mation of strong, large-scale magnetic fields from weak, microscopic fields is a
consequence of the interplay of the magnetorotational- and Parker instability in
combination with reconnection and inwards motion due to accretion (Hujeirat
et al., 2003).

1.2 Jets in Astrophysics

In astrophysics the term jet applies to collimated, roughly cone-shaped flows of
hot plasma. Curtis (1918) discovered the first source to eject a jet. It was the
giant elliptical galaxy M87 in the center of the virgo cluster (Fig. 1.1). At first
this seemed to be extraordinary, but nowadays jets are found to be associated
with a wide variety of astrophysical objects. First, there are active galactic nuclei
(AGN) like quasars, radio galaxies, Seyfert-galaxies, blazars, etc... These systems
contain super-massive black holes and the processes at work are most violent.
However, jets are also found around young stellar objects (YSO), i.e. T-Tauri-
stars (associated with Herbig-Haro-objects) and in stellar-mass binary systems,
containing compact objects like white dwarfs, neutron stars or stellar black holes.
In the latter case, the primary objects accrete mass from their companions or from
the surrounding medium (like in planetary nebulae). Examples for these systems
are super soft X-ray sources, low mass X-ray binaries, black hole X-ray transients,
etc...
It is generally considered that ejections of winds or collimated jets are connected
to accretion phenomena. This connection is supported by the observational fact
that most stellar systems, launching jets, also feature an accretion disk (see Livio,
1999, and references therein).

YSO’s are a good example for this connection, since a protostar is usually sur-
rounded by an accretion disk, consisting of dust. The inflow of mass is ac-
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Figure 1.1: The optical jet of the giant elliptical galaxy M87

Credit: NASA and The Hubble Heritage Team (STScI/AURA)

companied with an outflowing, bipolar, cone-shaped wind that emanates per-
pendicular to the disk plane. The mass-loss rate due to the wind ranges from
10−8 − 10−5M�yr

−1, where M� is the solar mass. There are weakly collimated,
slow winds (< 20 kms−1) and strongly collimated, fast winds (100−300 kms−1),
containing mass in the range of 10−2 − 102M�. Observations clearly show that
these winds are formed in the inner region of the accretion disk (Fig. 1.2, see
also Burrows et al. (1996)). They extend up to several parsecs and permeate the
interstellar medium at supersonic velocities. At the terminal points, where the
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jets end, hot spots are created: bright emission regions that are due to ionisation
by shock-waves. The structure of these jets is clumpy, indicating instabilities in
the outflowing plasma and irregularities in the ejection of mass.
The connection between accretion and jet formation is not so clear in the case
of AGN, though, but the presence of accretion disks is still very likely. The
underlying processes become much more violent in systems, containing compact
objects. Their jets propagate with highly relativistic velocities and extend up to
the parsec scale (X-ray binaries) or kiloparsec scale (AGN), thereby maintaining
collimation. The jet of the radio galaxy NGC 6251, for example, maintains linear
collimation up to 1Mpc, indicating that the underlying mechanisms work effec-
tively for the duration of 1− 10Myr.
The energetics associated with these phenomena are among the most power-
ful in the universe: A typical Seyfert galaxy has a bolometric luminosity of
1011 − 5 · 1012L� while quasars even have ≥ 1013L�, where L� is the solar lumi-
nosity (see e.g. Robson, 1996; Woo and Urry, 2002), making quasars the brightest
systems in the universe.

This raises the question how this energy is generated. The gravitational energy
released in an accretion flow onto a supermassive black hole appears to be the
most likely source of energy. A particle at the radial distance r from an object
of mass M has the potential energy per mass:

Epot = −GM
r
, (1.1)

where G is Newton’s constant. This amount of energy may be liberated in the
form of radiation. The luminosity L associated with an accretion flow scales as:

L =
GMṀ

rin
= ηṀc2 , η =

GM

c2rin
, (1.2)

where Ṁ, c, η are the accretion rate, the speed of light and the accretion efficiency,
respectively. η is a measure of how much gravitational energy is released. rin is
the minimal radius of emission from the accretion flow. For YSO’s, white dwarfs
and neutron stars this might be the stellar radius. For particles orbiting a black
hole it is the radius of marginal stability rms. Interior to rms particles would very
rapidly fall into hole without being able to distribute or radiate their energy.
The maximal efficiency equals 0.08 for a Schwarzschild black hole and ranges
from 0.06 to 0.42 for a Kerr black hole1. The accretion luminosity causes an
outward oriented radiation pressure due to the liberated gravitational energy. For
stationary flows, the radiation pressure can not exceed the gravitational pull of
the central object. This sets an upper limit for the accretion rate, the Eddington

1These two values correspond to a maximally rotating black hole in the case that the matter
is in counter-rotation or co-rotation, respectively.
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Figure 1.2: A collection of observations of Herbig-Haro objects

Upper Left Credit: C. Burrows (STScI & ESA), the WFPC 2 Investigation Definition Team,
and NASA
Upper Right Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition
Team, and NASA
Bottom Credit: J. Morse/STScI, and NASA

limit. The corresponding luminosity is called the Eddington luminosity (see e.g.
Camenzind, 2007):

LEdd =
4πGMmpc

σT
= 3.26 · 104 · L�

M

M�
= 1.26 · 1038erg s−1 · M

M�
, (1.3)

where mp and σT stand for the proton mass and the Thomson cross section,
respectively. One should note that this is only a strict limit in the case of sta-
tionary, one dimensional flows. We can now estimate the accretion rate, necessary
to produce the typical luminosities of Seyfert galaxies and quasars. For a rough
estimate we use η = 0.1 and obtain:

Ṁ ≈ 4 · 1024g s−1 or ≤ 0.1M�yr
−1 for Seyfert galaxies,

Ṁ ≥ 4 · 1026g s−1 or ≥ 10M�yr
−1 for quasars.

(1.4)
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Systems vjet radius where vjet = vesc Example
YSO 200 kms−1 ≈ 10R�M/M� HH30/34
SSXS 3800 kms−1 ≈ 3REM/M� RXJ0513.9-6951

LMXB 0.26 c ≈ 30 rg SS433
BHXT 0.9 c ≈ 2.5 rg GRS1915+105
AGN γ ≥ 3 ≤ 2.25 rg M87

Table 1.1: Comparison between jet velocity and escape velocity

The radius where vjet = vesc is expressed in typical units. These are solar radii R� for YSO’s,
earth radii RE for SSXS (super soft X-ray sources, i.e. accreting white dwarfs) and gravitational
radii rg for LMXB (low mass X-ray binaries, i.e. accreting neutron stars), BHXT (black hole
X-ray transients) and AGN. The gravitational radius rg is given by rg = GM/c2.

We see that the accretion process can provide the necessary amount of energy to
produce the observed luminosities.
Jets are expected to play a major role in the transport of energy and angular
momentum from the accretion disk. In order to become so energetic, they have
to be formed deep inside the potential well, in the immediate the vicinity of the
central object. This is in fact supported by observation in cases where the central
region is accessible (e.g. YSO’s, see above). In the case of AGN and stellar mass
X-ray binaries, one can rely on multi-wavelength observations. Another support
is given by the fact that jet velocities are of the order of the escape velocity in
the vicinity of the central object (see Table 1.1).
We will now further concentrate on jets from systems that contain compact ob-
jects. Jet-launching X-ray binaries are called µQuasars, since they share three
important features with the original quasars: a compact object in its center, an
accretion disk, the ejection of relativistic blobs and/or jets. The ”µ” in µQuasars
points to the fact that the compact objects in these systems usually have masses
M = O(1) − O(10)M� while the super-massive black holes in quasars have
M = O(106) − O(109)M�. Simple scales of length and time are proportional
to the mass of the compact object. Hence, processes that operate in quasars over
several 103yr, say, operate over several days in the case of µQuasars. This makes
them the ideal laboratory for the study of quasars, aside from the fact that they
are already very interesting by themselves. The similarities in these systems,
AGN and µQuasars, suggests that the physics of accretion onto black holes is
the same over a large range of scales and that there is an underlying unity in the
process of accretion and jet formation.
The jets of AGN and µQuasars feature relativistic effects namely apparent super-
luminal motion and relativistic beaming. Let us take a look at how this works:
Let S(ν) be the frequency dependent flux density as measured in the comoving

frame of the source. An observer moving with relative velocity parameter ~β = ~v/c
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measures the flux density:

Sob(ν) = S(ν)D(β, θ)3+α, (1.5)

D(β, θ) =
1

γ (1− β cos θ)
, (1.6)

where γ = (1−β2)−
1
2 is the Lorentz factor, D the Doppler factor and θ the angle

between the line of sight and the velocity of the observer. α = −d lnS/d ln ν
is the spectral index (see Blandford and Konigl, 1979). Hence, the intensity of
measured flux depends on the angle enclosed with the line of sight. (1.6) achieves
a maximum at θ = 0 and a minimum at θ = π. Thus the intensity is strongly
amplified for the approaching and weakened for the receding component. This
becomes more and more dramatic the closer β approaches 1. Writing 1 − β =
δ � 1, we obtain from (1.5):

1

γ (1− β cos θ)
=


√

2/δ � 1 , θ = 0√
2δ � 1 , θ = π/2√
δ/2 � 1 , θ = π

. (1.7)

Indeed in many cases relativistic ejecta are only detected on one side of the
source. Theory, on the other hand, usually assumes symmetric systems that
launch bipolar jets, propagating along the axis of rotation in opposite directions.

Of course, there is the possibility that there are some processes at work in the sys-
tem that break symmetry and prefer one side. However, one usually explains the
missing of the second jet by relativistic beaming. This interpretation is supported
by the fact that measured brightness temperatures of jet plasma occasionally ex-
ceed 1012K. This clearly indicates relativistic beaming, since the plasma would
rapidly cool via inverse Compton scattering at such temperatures.
Another relativistic effect occurring in astrophysical jets is apparent superluminal
motion. Due to the finite velocity of light the observer moving relative to the
source measures the velocity

~βob =
~n×

(
~β × ~n

)
1− ~β~n

=
~β − ~nβ cos θ

1− β cos θ
, (1.8)

where ~n is the tangent-vector to the line of sight (Blandford and Konigl, 1979).
Hence, the magnitude of the observed velocity is equal to

βob(θ) =
β sin θ

1− ~β cos θ
. (1.9)

This expression peaks at cos θ = β. Hence, we have:

βob(arccos β) =
β√

1− β2
≥ 1 for β ≥ 1√

2
. (1.10)
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Figure 1.3: The radio galaxy Centaurus A

The left image shows Centaurus A in visible light (dust in the galactic plane and background
stars), submillimeter wavelengths (orange color) and X-rays (blue color). The right image,
which is purely in X-rays, displays a clean one-sided jet (the thin blue strip) emanating from
the upper side. It propagates with ≈ 0.5 c and extends over ≈ 4 kpc. It is visible in X-rays and
radio-waves. There is a cloud like double structure on both sides of the galaxy emitting in the
submillimeter regime. This feature occurs in most radio galaxies and is not to be confused with
the actual jets. The clouds and the jet are a little bit bent. This might be due to perturbations
from neighboring galaxies or the precession of the axis of rotation.
Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter: MPIfR/ESO/APEX/A.Weiss
et al.; Optical: ESO/WFI

Thus jet plasma propagating at velocities ≥ 0.707 c may appear superluminal.
An example is the jet of the quasar 3C273 (Fig. 1.4).
Jets are associated with the emission of radio waves up to X-rays and γ-rays.
The radiation is linearly polarized and their spectrum is nonthermal, obeying a
power law:

S(ν) ∝ ν−α (1.11)

This is generally interpreted as synchrotron radiation from relativistic electrons
and hints to the existence of magnetic fields in the jet plasma. Radiated power
via synchrotron emission is of the order 1045erg s−1 for AGN (Robson, 1996).
The spectral index α usually adopts values from 0 to 1. The X-ray and γ-ray
spectrum is also nonthermal and probably due to inverse Compton scattering of
soft photons with relativistic electrons.
According to (C.4) a relativistic electron (v ≈ c) moving in a magnetic field of
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Figure 1.4: The quasar 3C273

The left panel shows the quasar 3C273 in X-rays. It was the first quasar to be discovered
(1963).
Credit: NASA/CXC/SAO/H.Marshall et al.
The right panel shows close ups of the jet. The images are optical (left,HST), X-ray (mid-
dle,Chandra), and radio (right,MERLIN).
Credit: Optical: NASA/STScI X-ray: NASA/CXC Radio: MERLIN

strength B, perpendicular to its velocity, radiates with power:

− dE

dt
≈ 1.6 · 10−7erg s−1 · γ2B2. (1.12)

Hence, the time scale to radiate this energy is:

tsync =
E

−dE/dt
≈ 5.2 s · γ−1B−2. (1.13)

Regarding that a synchrotron source of electrons with energy E = γmec
2 must

satisfy E = Ltsync, we find that the minimal energy content is obtained when the
magnetic energy is approximately in equipartition with the relativistic particle
energy (see Frank et al., 1992, page 221). Polarisation measurements can also
reveal the direction of the magnetic field. Near the origin of the jet, the field is
predominantly parallel to its axis, while it becomes orthogonal at larger distances.

There is no consensus about the details of the formation, acceleration and col-
limation of jets. Yet, synchrotron emission is a clear sign of the importance of
magnetic fields in the underlying mechanisms.
The model presented in this diploma thesis is based on the existence of strong,
large-scale, poloidal magnetic fields in the vicinity of the central object. These
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fields rapidly extract angular momentum from the disk thus powering a centrifu-
gally driven wind. The collimation of the wind happens on much larger scales by
means of advected, toroidal magnetic fields. However, the subject of this model
is only the immediate vicinity of the central object where the formation of the
jet takes place.

1.3 The µQuasar GRS1915+105

We will now introduce the X-ray source GRS1915+105. It is a typical µQuasar
on one side but it also displays some exceptional features rendering it hard, but
all the more interesting to interpret its behavior. In the last chapter we will apply
our model to this exotic system. Thus, a whole section is dedicated to it, so the
reader becomes familiar with its properties.

GRS1915+105 was discovered in 1992 by the X-ray probe GRANAT. It was the
first galactic source discovered to launch jets of apparent superluminal speeds
(Greiner et al., 1996a). GRS1915+105 is an X-ray binary system containing a
compact component, namely a stellar mass black hole, and a main sequence star
of spectral type K-M and luminosity class III (giant) that transfers mass to the
black hole. GRS1915+105 has an orbital period of 33.5 d and its velocity curve
peaks at 145 ± 15 kms−1. Its distance from earth is estimated to 11 − 13 kpc
(Greiner, 2001). The system parameters indicate accretion via Roche-lobe over-
flow. Based on the observations of RXTE on 1996 June 19, September 27 and

Figure 1.5: Still from an animation of GRS1915+105

Credit: NASA/CXC/A.Hobart
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Figure 1.6: The ejection event in
GRS1915+105 on 1996 March 19

This sequence of VLA images shows the propa-
gation of two blobs of plasma, that were ejected
in the outburst on 1994 March 19. The cross
marks the position of GRS1915+105.
Credit: National Radio Astronomy Observatory
/ Associated Universities, Inc. / National Sci-
ence Foundation

October 1 to 29, Belloni et al. (1997a)
have estimated the accretion rate of GRS
1915+105 to Ṁ ≈ 1.7 · 10−8M�yr

−1

during quiescence, for an extreme Kerr
black hole. During outbursts the ac-
cretion rate is higher by a factor of 2
and variable (the terms ”quiescence” and
”outburst” are explained in the text be-
low). For comparison: the Eddington
accretion rate for an object of 14M�
is approximately ṀEdd ≈ LEdd/c

2 =
3.1 · 10−8M�yr

−1. This is different from
usual stellar black hole systems which ac-
crete at a much lower rate, e.g. GRO
J1655-40 with Ṁ/ṀEdd ≈ 0.1− 0.2.
The system launches relativistic blobs
and steady jets of plasma in a quasi pe-
riodic cycle of 20-30 days that propagate
at an apparent velocity of 0.65 − 1.25 c
(like in the outburst on 1994 March 19,
see Mirabel and Rodŕıguez (1994)). This
corresponds to propagation with 0.92 c
under an inclination angle of θ ≈ 70◦±2◦

to the line of sight, whereas the ejection
angle changes within about 10◦ between
different events (Mirabel and Rodŕıguez,
1999). Observations with MERLIN in
1997 and VLBA in 1998 detected speeds
of 1.3−1.7 c (Fender et al., 1999; Dhawan
et al., 2000), corresponding to 0.98 c and
θ ≈ 66◦. However, it is not clear whether
this result is due to changes in the incli-
nation angle, resolution effects or actual,
faster intrinsic motion. The observations
with VLBA show that the jets are al-
ready collimated on scales of ≈ 10AU .

They have a stable axis at scales ≥ 500− 1000AU over four years (Mirabel and
Rodŕıguez, 1999; Dhawan et al., 2000).
If assumed to consist of equal numbers of electrons and protons, clouds of min-
imum mass 1019g are ejected every few 10min during these events. However,
the total mass expelled in such a cycle is ≈ 1021g (Belloni et al., 1997a; Mirabel



28 CHAPTER 1. INTRODUCTION

et al., 1998). Additionally, the luminosity due to synchrotron emission has to
be at least 1036erg s−1 (comparable to the thermal X-ray luminosity, Sams et al.
(1996)). Rodŕıguez and Mirabel (1999) have made some estimates on the mass
and energy of the ejecta of the 1994 March 19 event (VLA images depicted in Fig.
1.6). They obtained a magnetic field strength of 5 · 10−2G, an energy of about
4 · 1043erg in relativistic electrons and a total ejected mass of the order 1023g, as-
suming equal numbers of electrons and protons in the ejecta. The ejection event
lasted for ≤ 3 days. Thus, a minimum power of 5 · 1038erg s−1 is required. This
is comparable with the maximum observed, steady luminosity ≈ 3 · 1038erg s−1

(Mirabel and Rodŕıguez, 1994; Harmon et al., 1994). All this allows for the crude
estimate that GRS1915+105 ejects mass of the order 1023g yr−1 in the form of
relativistic (0.92 − 0.98 c), collimated outflows corresponding to a power output
of 103L� (Mirabel and Rodŕıguez, 1999).
The measurement of the inclination angle makes it possible to estimate the mass
of the compact component to 14± 4M�. Thus, GRS1915+105 harbors the most
massive stellar black hole, so far discovered in the milky way. It might even be
more massive, since the donor’s mass might be underestimated to due to modi-
fications of the light curve by loss of mass (Greiner, 2001).
Systems containing stellar mass black holes often have different states of intensity
and spectral distribution. There are high intensity states with a strong thermal
component and a soft X-ray component that is described by a steeply falling
power law. These are the high/soft or outburst states. Then there are low/hard
or quiescent states with low intensity, negligible thermal contribution and a flat
power law component. GRS1915+105 also displays flaring states with rapid oscil-
lations between the high/soft and the low/hard state. Its intensity and spectrum
display strong variations. The luminosity ranges from 1038erg s−1 during qui-
escence (Rau and Greiner, 2003) to 1039erg s−1 in the 1 − 25 keV range during
outbursts (Greiner et al., 1996a). Thus GRS1915+105 is the most energetic ob-
ject in the milky way.
The spectrum has a thermal component that is interpreted as an accretion disk
and a power law component that is considered to be connected to jet formation.
The power law index assumes values in the range 2.3-3.9. Around 6 keV one
also has to include an iron line plus absorption edge when fitting the spectrum
(Belloni et al., 1997a).
An accretion disk surrounding a black hole is unstable interior to rms, the radius
of marginal stability. rms, on the other hand, is a decreasing function of the black
hole spin. Hence, a disk surrounding a rotating black hole achieves higher temper-
atures since its inner boundary is closer to the event horizon. In GRS1915+105
the temperature of the disk component switches between two values at the inner
edge, one constant and one more variable. The higher value indicates an inner
radius of ≈ 20 km (2.2 keV ) and the lower 50 − 90 km (≈ 1 keV ), respectively
(see Belloni et al., 1997a,b). In any case the inner radius was observed to be
below ≈ 300 km.
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Such a low value for the minimal inner radius of the accretion disk leads to the
assumption that the compact component of GRS1915+105 is very rapidly rotat-
ing, since rms = 20.7 km for a 14M� black hole in maximal rotation. However,
it should be noted that rms = 25.4 km for M = 14M� and a = 0.9982, which
is the maximum spin of an accreting black hole (see Thorne, 1974). This means
that the black hole in GRS1915+105 is either spinning with a > 0.9982 or has
mass M < 14M�. Together with GRO J1655-40 it is the only galactic source
that is believed to contain a maximally rotating black hole (Belloni et al., 1997a;
Morgan et al., 1997; Zhang et al., 1997).

Belloni et al. (2000) have analyzed the observations of GRS1915+105, performed
by RXTE between January 1996 and December 1997. They divided the spectrum
into three energy intervals:

”0” : 2− 5 keV
”1” : 5− 13 keV
”2” : 13− 60 keV.

(1.14)

Then they defined the hardness ratios:

HR1 =
”1”

”0”
and HR2 =

”2”

”0”
. (1.15)

Based on count rate and hardness ratios the variability of the source could be
separated into twelve classes. Fitting the data with a sum of black-body and
power law spectrum they identified three basic states A,B and C, defined as
(sect. 3.3 of Belloni et al., 2000):

• A: low rate, low HR1 and HR2

• B: high rate, high HR1

• C: low rate, low HR1, variable HR2 depending of the length of the interval

State A is dominated by the disk component and shows little variability. State
B is the typical high/soft state of black hole transients with a strong accretion
disk component reaching down to the innermost stable orbit. In the state C,
the power law component is strong while the disk component is very weak. The
system does not switch between these states at random. There are periods where
the source is in state A and also long periods (about 40-50% of the time) where
it remains in state C only, indicating that the system is in equilibrium in these
states. Then there are phases where the system oscillates between the states C
and A or between states B and A. Additionally there are quasiperiodic sequences
where the sources follows the pattern B-C-A-B. The behavior is described in
much more detail in Belloni et al. (2000). Fig. 1.7 shows a schematic sketch
of the position of these states in the hardness ratio-diagram and the observed
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Figure 1.7: The three basic states of in-
tensity/spectrum of GRS1915+105

A schematic illustration that shows the three
basic states of GRS1915+105 and the transi-
tions between them in a hardness ratio-diagram.
For further information see Belloni et al. (2000).

transitions between them. Various quasi periodic oscillations of the light curve
are observed with frequencies ranging from 10−3 − 67Hz (Greiner et al., 1996b).
In the range from 1− 15Hz they are correlated to the inner disk radius and are
clearly connected to state C. Belloni et al. (2000) propose a model where the
inner part of the accretion disk is removed during state C and, at least partially,
channeled into an outflowing wind or jet. However, it can be shown that such
a configuration can not be stationary, contradictious to the system appearing to
be in an equilibrium during state C (Papaloizou and Pringle, 1985).
Jet ejection is associated with radio and X-ray emission. The ejection of rela-
tivistic blobs and jets is preceded by unusual activities in X-rays, but not all
unusual X-ray activity is followed by an ejection. Yet, there is a positive correla-
tion between the radio emission and the power law slope. Also there is a positive
correlation between the radio flux and the X-ray flux: Large amplitude varia-
tions within seconds in the X-ray spectrum are accompanied with variations at
minute-scale in radio (see Mirabel and Rodŕıguez, 1999; Rau and Greiner, 2003).
Furthermore, superluminal blobs of radio emitting material are ejected when the
system is passing over from a quiescent to a flaring phase (Mirabel et al., 1998).
All this leads to the conclusion that there is steady jet emission during state C
and abrupt emission during the ”A/C”-oscillations and the ”B-A-C-B”-cycle.
Livio et al. (2003) propose a model where small scale magnetic fields are generated
in the accretion disk by a dynamo process during states A/B. Energy liberated
by viscous dissipation is locally radiated away in the accretion disk and in the
corona. In state C, however, a global poloidal magnetic field has formed in the
inner part of the disk. The energy in this region is then released in the form of a
magnetically driven jet or wind. Thus the disk appears to be truncated since it
does not radiate locally. The jet power is supposed to be a substantial fraction
of the accretion luminosity.
Indeed the model of Livio et al. (2003) is based on the models of Hujeirat et al.
(2002, 2003); Hujeirat (2003, 2004) which are the subject of this thesis. In the
latter it is assumed that small scale magnetic fields are amplified by the magneto-
rotational instability (see Balbus and Hawley, 1991). Magnetic flux tubes recon-
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nect and subsequently form a large-scale poloidal magnetic field in the inner
region of the disk. The field suppresses the generation of turbulence and rapidly
extracts angular momentum from the disk matter. This process creates a strong
toroidal field in a geometrically thin layer above the disk where the matter is
forced to rotate with super-Keplerian velocities. The jet is then driven by cen-
trifugal acceleration of the matter in this layer while a large part of the toroidal
field is advected outwards.
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Chapter 2

Magnetohydrodynamics and the
Standard Disk

In order to study jet formation in accretion flows onto compact objects we have
to go to the innermost boundary layer of the accretion disk. We will have to
deal with a lot of difficulties there. They arise from the complicated dynamics
of the flow which includes the action of magnetic fields. Furthermore, general
relativistic effects due to the geometry of spacetime are of great importance in
the vicinity of a compact object. It will be useful, however, to introduce the gov-
erning equations in the Newtonian regime first. This way the equations will be
much simpler and their overall structure will already be familiar when we proceed
to the general relativistic regime.
The second goal of this chapter is to introduce the standard disk model of Shakura
and Sunyaev (1973). It describes the nature of the accretion flow at sufficiently
large distance to the center and sets the boundary conditions for the flow in the
inner region. Novikov and Thorne (1973) have derived a general relativistic ver-
sion of the standard disk model. However, we want to introduce just the basic
ideas and the general properties of the standard disk so it will suffice to describe
the accretion flow by means of the Newtonian theory of gravity.
Thereafter, we are ready to proceed to the general relativistic regime and subse-
quently derive the model that is the subject of this diploma thesis.

2.1 The Magnetohydrodynamic Equations

The description of an accretion flow around a compact object is a problem that
falls in the domain hydrodynamics. In hydrodynamics the governing equations
are the Navier-Stokes equations. They consist of the continuity equation, the
momentum equations and the energy equation. In the case of vanishing viscosity
the Navier-Stokes equations reduce to the Euler equations. Including contribu-
tions of electromagnetic fields yields the magnetohydrodynamic equations.

33
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The continuity equation describes the conservation of mass. It reads:

∂tρ+ ~∇ (ρ~v) = 0, (2.1)

where ρ,~v are the density and fluid velocity, respectively. Vividly this equation
says: The amount of mass inside a given volume can only change in time (first
term) when there is a mass flow through its surface (second term). Together
with the conservation of mass we need equations describing the conservation of
the three components of momentum. In their conservative form these equations
read:

∂t (ρ~v) + ~∇ (ρ~v ⊗ ~v + P ) = ~f. (2.2)

ρ~v, P and ~f correspond to momentum density, pressure and force density, respec-
tively. The second term on the left-hand side represents convection of momentum
by fluid and pressure gradients. ~f contains all sorts of yet unspecified forces that
might act on the accretion flow. One possible external force is gravity, of course.
In the case of the standard disk we will have to deal with viscous flows. Shearing
viscosity will be represented by the term 2~∇ (νρσ) on the right-hand side of (2.2).
ν, σ are the coefficient of kinematic viscosity and the shear tensor, respectively1.
We will have to include it later when we derive the standard disk solution of
Shakura and Sunyaev (1973). Using (2.1) we can rewrite (2.2) to yield:

ρ
(
∂t + ~v~∇

)
~v = −~∇P + ~f. (2.3)

One should note that the left-hand side can be rewritten as ρd~v/dt. Now it is
manifest that these equations have the form:

”mass density”× ”acceleration” = ”force density”.

Hence the momentum equations are nothing but the continuous version of New-
ton’s second law of motion.
The energy equation describes the flux of energy in the flow, caused by various
effects. In conservative form it reads:

∂t

(
1

2
ρ~v2 + ρE

)
+ ~∇

((
1

2
ρ~v2 + ρE + P

)
~v

)
= ~v ~f − ~∇~q. (2.4)

The first term on the left-hand side represents the conserved quantity, namely
the total energy density, consisting of the kinetic energy density 1

2
ρ~v2 and the

internal energy density ρE . E is then the internal energy per unit mass. On the
right-hand side there is a new quantity, the heat flux vector ~q. It describes energy
fluxes caused by various sorts of processes. These can be divided into two main
categories: radiative fluxes, represented by the radiative flux vector ~Frad and heat

1A detailed derivation of this term can be found in Novikov and Thorne (1973); Klessen
(2008, page 12).
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conduction, represented by the conductive flux vector ~qC , i.e.: ~q = ~Frad + ~qC .
The former is given by:

~Frad =

∫
dν

∫
dΩ ~nIν , (2.5)

where Iν is the intensity per unit frequency. In most cases we do not have to
worry about further equations for the intensity but can work with approximations
for ~Frad (Frank et al., 1992). The transport of energy by radiation and heat

conduction is given by ~∇~Frad and ~∇~qC , respectively. Heat conduction is due to
redistribution of thermal energy by turbulent motion. In many cases, though,
~∇ ~qC can be dropped because temperature gradients are small enough (Frank
et al., 1992). Hence, we approximate ~q as:

~q ≈ ~Frad.

Just like for the momentum equations it is possible to use (2.1) and (2.2) to
rewrite (2.4) to yield:

ρ
(
∂t + ~v~∇

)
E = −PΘ− ~∇~q, (2.6)

where we have defined the volume expansion2 Θ = ~∇~v. (2.6) has now the form
of an evolution equation for E . This will be most useful for analytic calculations.
Just like we had to modify the momentum equations to include viscosity, we will
have to add a term on the right-hand side of the energy equation describing heat
generation by viscous dissipation. This will be the total contraction of the viscous
shear tensor:

2νρ Tr σ2. (2.7)

So far we have deduced the hydrodynamic (HD) equations. This will be sufficient
in the case of the standard disk. To be able to deal with electromagnetic fields,
though, we have to introduce Maxwell’s equations. They read:

~∇ ~E =
q

ε0

(2.8)

− 1

c2
∂t ~E + ~∇× ~B = µ0

~j (2.9)

~∇ ~B = 0 (2.10)

∂t ~B + ~∇× ~E = 0, (2.11)

where q is the charge density and ~E, ~B,~j are the 3-vectors of the electric field,
magnetic field and current density, respectively. Further, we have the speed of
light c, the vacuum permeability µ0 and the vacuum permittivity ε0 = (µ0c

2)
−1

.

2The name ”volume expansion” comes from the fact that one can show that d(lnV )/dt = Θ
(Misner et al., 1973, page 565).
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In order to arrive at the magnetohydrodynamic (MHD) equations we also have
to include Ohm’s law. In the Newtonian regime it simply reads:

~j = σ
(
~E + ~v × ~B

)
, (2.12)

where σ is the electric conductivity. It will be convenient to define the magnetic
diffusivity ηM . It is connected to the electric conductivity σ by:

ηM =
1

µ0σ
. (2.13)

Acting with ~∇× on (2.12) and inserting (2.9) and (2.11) yields:

∂t ~B = ~∇×
(
~v × ~B

)
− ~∇×

(
ηM

(
~∇× ~B − 1

c2
∂t ~E

))
(2.14)

⇔(
∂t + ~v~∇

)
~B =

(
~B · ~∇

)
~v − ~BΘ− ~∇×

(
ηM

(
~∇× ~B − 1

c2
∂t ~E

))
.

(2.15)

Now we have obtained an evolution equation for the magnetic field - the induction
equation. The first term is called the advection term. It describes the deformation
of the magnetic field by motion of the plasma. In the limit σ →∞ (ideal MHD)
this would be the only term on the right-hand side. In this case magnetic field
lines are ”frozen” into the plasma. The second term is called the diffusion term.
It plays an important role in the theory of reconnection: large currents occur
within a small region making the diffusion term significant even in the case of
large σ. In the Newtonian regime perturbations in the field topology propagate
with velocities much smaller than the speed of light. Therefore one can usually
neglect the displacement current in the diffusion term. The induction equation
then reads: (

∂t + ~v~∇
)
~B =

(
~B · ~∇

)
~v − ~BΘ− ~∇×

(
ηM ~∇× ~B

)
. (2.16)

Now we have augmented the HD equations by the induction equation in order
to obtain the MHD equations. Our intention is accomplished by modifying the
momentum equations and the energy equation by electromagnetic contributions:

ρ
(
∂t + ~v~∇

)
~v = −~∇

(
P +

~B2

2µ0

)
+

1

µ0

(
~B · ~∇

)
~B + ~f (2.17)

ρ
(
∂t + ~v~∇

)
E = −PΘ + µ0ηM~j

2 − ~∇~q. (2.18)

The first magnetic term on the right-hand side of the momentum equations is
called the magnetic pressure and the second corresponds to magnetic tension of
the lines of force. Their origin lies in the Lorentz force density:

~fL = q ~E +~j × ~B. (2.19)
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One obtains the magnetic pressure- and tension terms by substituting (2.9) for ~j
and neglecting the electric term. The ladder is usually a good approximation for
a plasma in astrophysics since the time scale for establishing charge neutrality is
of the order 10−9 s for reasonable parameters (see Frank et al., 1992).
The new term on the right-hand side of the energy equation describes heat gen-
eration by ohmic heating. This term is absent in the ideal MHD approximation.
Further, it is the only term where electric fields appear explicitly in the MHD
equations. There is no contribution of electric fields in the evolution of the mag-
netic fields or the Euler equations anymore. Yet they can be recovered by use of
(2.12) and (2.9):

~E = −~v × ~B + ηM ~∇× ~B. (2.20)

Now we have derived the governing equations of magnetized, hydrodynamic flows
using the Newtonian description of the gravitational field. In the following we
will derive the standard disk solution from these equations. In Chapter 3 we will
generalize the MHD equations to the relativistic regime.

2.2 The Standard Disk Solution

Consider an accretion flow around a central object. If there was no interaction
between different gas particles, there could be no accretion at all.
All particles would just stay on elliptical orbits forever, since there would be no
angular momentum transfer. There has to be some sort of interaction between the
particles that exerts a torque and thus redistributes angular momentum. Molecu-
lar viscosity can not account for this torque, since its effect is too small by several
orders of magnitude (see Frank et al., 1992). Turbulence in the accretion disk,
on the other hand, might be able to act like an effective viscosity of sufficient
magnitude. Therefore we will try to describe this interaction as by means of an
anomalous viscosity with kinematic viscosity coefficient ν. The way this viscosity
is generated remains undetermined within the standard disk model. Yet, it seems
likely that the magnetorotational instability (MRI) is responsible for shearing in
this flow (for further information see Balbus and Hawley, 1991).
The kinematic coefficient of viscosity is given by ν = vtlt, where vt and lt are
the typical velocity and length scale for the turbulent motion, respectively. Even
though there is no sophisticated description of these two quantities, we can make
two simple estimates that make it possible to parameterize our ignorance. We
realize that turbulent eddies cannot exceed the disk height H. Also the typical
turbulent velocity will not exceed the sound speed cS. If it did, shocks would de-
velop that dissipate this turbulent kinetic energy into thermal energy. Therefore
we have lt ≤ H and vt ≤ cS, respectively. Correspondingly, Shakura and Sunyaev
(1973) have parameterized the viscosity by:

ν = αcSH. (2.21)
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Our whole ignorance has been concentrated into the parameter α. The only thing
we can expect it to approximately satisfy is: α < 1.
Consider now a close binary system where the secondary feeds the accretion flow
onto the primary by Roche lobe overflow. The flow will have a sufficient amount
of angular momentum to form an accretion disk instead of falling directly onto
the primary (Frank et al., 1992). The dynamical time scale tdyn = r/vϕ will
be very short. In order to be accreted the fluid particles have to move in the
radial direction towards then central object thereby releasing gravitational energy.
Viscous dissipation will convert rotational energy into thermal energy that can
be radiated away. One can see that for the orbiting matter it is no problem
energetically to move towards the center. But in order to move inwards it is not
enough to loose rotational energy. The matter has to loose angular momentum,
too. Viscous shearing forces act on the time scale tvis = r2/ν = r/vr. The
dynamical time scale will usually be much shorter than the viscous time scale.
We will therefore obtain a disk where the matter slowly spirals inwards. Motion
in the ϕ-direction we will be close to the lowest energy orbits. These are circular
orbits with the Keplerian angular velocity:

Ω =

√
GM

r3
. (2.22)

The disk will be compressed by centrifugal forces. Hence, we assume the disk to
be geometrically thin, i.e. the thickness H of the disk satisfies H/r � 1. The
thinness implies that all quantities depend very weakly on the vertical position
within the disk. We will therefore use vertically averaged quantities. We define
the surface density Σ by integrating the density over z in the disk region:

Σ =

H
2∫

−H
2

dz ρ ≈ Hρ. (2.23)

In the second part we have exerted the assumption that quantities do not vary
much within the disk. We will also use a mass-averaged radial velocity that is
defined by:

〈vr〉 =
1

Σ

H
2∫

−H
2

dz ρvr ≈ vr. (2.24)

It is negligible compared to the orbital velocity: 〈vr〉 � vϕ = rΩ. In our approxi-
mation we have a vertical velocity that is zero on average: 〈vz〉 = 0. We will also
assume that the disk is stationary, ∂t = 0, and perfectly axisymmetric, ∂ϕ = 0.
In order to write down the equations for the standard disk we have to quote the
expression for the viscous force density that exerts the torque on the disk annuli.
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This force density has a ϕ-component, only. It is given by3:

fϕ =
1

r
∂r
(
νρr3∂rΩ

)
. (2.25)

Now we turn to the energy equation (2.6): From the assumption that the disk
is thin we conclude that most of the heat generated by viscous dissipation is
directly radiated in the z-direction and does not go into internal forms. Hence,
the contribution of E to the energy equation is negligible (Novikov and Thorne,
1973). Correspondingly there will be only small temperature gradients so we can

approximate ~∇~q ≈ ~∇~Frad. Finally there will not be any strong compression of
the flow so we can drop the P ~∇~v-term. However, we have a significant amount of
viscous heating. Thus we add the expression (2.7) on the right-hand side, leaving
us with:

0 = −~∇~Frad + 2νρr2 · 2σrϕ2 , where σrϕ =
1

2
∂rΩ. (2.26)

Since the flux of radiation is mainly in the vertical direction we can approximate
~F ≈ F z~ez. We then have 2F =

∫ H/2
−H/2 dz ∂zF

z where F = ±F z(z = ±H) is the

radiation flux from the disk surface.
Now we have all ingredients to quote the equations for the standard disk:

The continuity Equation:

1

r
∂r (rΣ 〈vr〉) = 0 (2.27)

The momentum equations:

0 = Σ

(
rΩ2 − GM

r2

)
(2.28)

Σ 〈vr〉 ∂r
(
r2Ω
)

=
1

r
∂r
(
νΣr3∂rΩ

)
(2.29)

0 = −∂zP − ρ
GMz

r3
(2.30)

The energy equation:

0 = −2F + νΣr2 (∂rΩ)2 (2.31)

It is not necessary to do the averaging in the vertical momentum equation. Before
we can solve this set of equations we need to augmented it by an equation of state,
the definition of the sound speed, a description of opacity and optical depth and
an expression for the radiative flux.

3For a detailed derivation of this expression Frank et al. (see 1992, page 58).
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To put the last thing first: we assume that the disk is optically thick, indicating
that the radiated flux can be approximated that of a blackbody:

F = − 16b

3κRρ
T 3∂zT. (2.32)

where b and κr are the Stefan-Boltzmann constant the Rosseland mean opacity,
respectively. The ladder is an average over the frequency dependent opacity. It
is given by:

1

κR
=

∫
dν 1

κν
∂TBν∫

dν ∂TBν

, (2.33)

where ∂TBν is the derivative of the normalized Planck distribution with respect
to temperature. Electron scattering and free-free absorption are the two main
contributions (Shakura and Sunyaev, 1973; Frank et al., 1992):

κff = 6.6 · 1022 cm
2

g
· ρ
[ g

cm3

]
(Tc[K])−

7
2 , κes = 0.4

cm2

g
. (2.34)

To make this assumption self consistent we have to check that the optical depth
τ indeed satisfies τ � 1. Therefore we will evaluate:

τ = ρHκR(Tc) = ΣκR, (2.35)

Provided that the disk is optically thick we approximate ∂z ≈ −1/H in (2.32) to
obtain:

F ≈ 4b

3τ
Tc

4. (2.36)

In writing this we have assumed that the central temperature Tc greatly exceeds
the surface temperature. The last two things that we add are the definition of
the sound speed and the equation of state for an ideal gas and a radiation field,
respectively:

cS
2 =

P

ρ
, P = Pgas + Prad (2.37)

Pgas =
ρkTc
µmH

(2.38)

Prad =
4b

3c
Tc

4, (2.39)

where mH is the mass of the hydrogen atom, µ the mean molecular weight mea-
sured in units of mH and c is the speed of light. We will divide the accretion disk
into three parts. In the outer part, gas pressure dominates and the opacity is
mainly due to free-free absorption. In the middle part, however, electron scatter-
ing becomes the main contribution to the opacity. The inner part is dominated



2.2. THE STANDARD DISK SOLUTION 41

by radiation pressure.

outer region: P ≈ Pgas , κR ≈ κff
middle region: P ≈ Pgas , κR ≈ κes
outer region: P ≈ Prad , κR ≈ κes.

(2.40)

We have collected everything we need. It is now a simple matter of substitution
to arrive at the standard disk solution (for a detailed derivation see Shakura and
Sunyaev, 1973; Frank et al., 1992). In terms of the non-dimensional variables

α, ṁ =
Ṁ

1017 g s−1
, m =

M

M�
and x =

r

rg
, (2.41)

whereM� is the solar mass and rg = GM/c2 is the gravitational radius, we obtain:

The outer solution:

Σ = 1.7 · 105 g cm−2 · µ
3
4 α−

4
5 ṁ

7
10 m−

1
2x−

3
4 f

7
10

H = 3.7 · 10−3 rg · µ−
3
8 α−

1
10 ṁ

3
20 m−

1
4 x

9
8 f

3
20

ρ = 3.1 · 102 g cm−3 · µ
9
8 α−

7
10 ṁ

11
20 m−

5
4 x−

15
8 f

11
20

Tc = 1.5 · 108K · µ
1
4 α−

1
5 ṁ

3
10 m−

1
2 x−

3
4 f

3
10

τff = 8.2 · 101 · µ α−
4
5 ṁ

1
5 f

1
5

ν = 6.2 · 1010 cm2s−1 · µ−
3
4 α

4
5 ṁ

3
10 m

1
2 x

3
4 f

3
10

〈vr〉 = −6.3 · 105 cm s−1 · µ−
3
4 α

4
5 ṁ

3
10 m−

1
2 x−

1
4 f−

7
10

cS = 1.1 · 108 cm s−1 · µ−
3
8 α−

1
10 ṁ

3
20 m−

1
4 x−

3
8 f

3
20 , (2.42)

The middle solution:

Σ = 4.5 · 104 g cm−2 · µ
4
5 α−

4
5 ṁ

3
5 m−

2
5 x−

3
5 f

3
5

H = 7.3 · 10−3 rg · µ−
2
5 α−

1
10 ṁ

1
5 m−

3
10 x

21
20 f

1
5

ρ = 4.1 · 101 g cm−3 · µ
6
5 α−

7
10 ṁ

2
5 m−

11
10 x−

33
20 f

2
5

Tc = 5.8 · 108K · µ
1
5 α−

1
5 ṁ

2
5 m−

3
5 x−

9
10 f

2
5

τes = 1.8 · 104 · µ
4
5 α−

4
5 ṁ

3
5 m−

2
5 x−

3
5 f

3
5

ν = 2.4 · 1011 cm2s−1 · µ−
4
5 α

4
5 ṁ

2
5 m

2
5 x

3
5 f

2
5

〈vr〉 = −2.4 · 106 cm s−1 · µ−
4
5 α

4
5 ṁ

2
5 m−

3
5 x−

2
5 f−

3
5

cS = 2.2 · 108 cm s−1 · µ−
2
5 α−

1
10 ṁ

1
5 m−

3
10 x−

9
20 f

1
5 , (2.43)
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The inner solution:

Σ = 2.1 g cm−2 · α−1 ṁ−1mx−
3
2 f−1 (2.44)

H = 1.1 rg · ṁm−1 f (2.45)

ρ = 1.3 · 10−5 g cm−3 · α−1 ṁ−2mx−
3
2 f−2 (2.46)

Tc = 4.8 · 107K · α−
1
4 m−

1
4 x−

3
8 (2.47)

τes = 8.2 · 10−1 · α−1 ṁ−1mx−
3
2 f−1 (2.48)

ν = 5.1 · 1015 cm2s−1 · α ṁ2m−1 x−
3
2 f 2 (2.49)

〈vr〉 = −5.2 · 1010 cm s−1 · α ṁ2m−2 x−
5
2 f

cS = 3.2 · 1010 cm s−1 · ṁm−1 x−
3
2 f, (2.50)

where f = 1−
√
r∗/r and r∗ is an integration constant that is interpreted as the

inner boundary of the disk (star surface or innermost stable orbit). The transition
between the outer- and middle region and between the middle- and inner region
is located at (Shakura and Sunyaev, 1973):

outer-middle: xf−
2
3 = 5.3 · 103 · ṁ 2

3 m−
2
3

middle-inner: xf−
16
21 = 96 · α 2

21 ṁ
16
21 m−

2
3

(2.51)

We will briefly review the assumptions we have made in order to verify that the
solution is indeed self-consistent. Since the standard disk solution is not the main
subject of this work, we will restrict ourselves to the outer solution. See Shakura
and Sunyaev (1973); Frank et al. (1992) for a more detailed discussion.
Our assumptions have been that:

• the disk is geometrically thin

• the disk is optically thick

• the surface temperature Ts can be approximated by the central temperature
Tc

• self-gravity of the disk matter can be neglected

We can now insert typical values for the outer disk region in stellar accreting



2.2. THE STANDARD DISK SOLUTION 43

systems, i.e.: µ = 0.615, ṁ = 0.1, m = 1, r = 1010 cm:

H

r
= 1.3 · 10−2α−

1
10f

3
20

τff = 32α−
4
5f

4
5

Ts
Tc
∝ τ

1
4 ≈ 2

Mdisk < 10−10M�α
− 4

5

〈vr〉 ≈ .3
km

s

cS ≈ 10
km

s

vϕ ≈ 1000
km

s
.

One can see that if the standard disk solution holds, the disk will be geometrically
thin. A further support is given by the fact that the radial drift is indeed very
subsonic and the orbital velocity highly supersonic. The second assumption is
also self-consistent since the disk is optically thick for all reasonable parameter
values. The third assumption was that the surface temperature of the disk could
be well approximated by the central temperature so one would not have to worry
about its vertical profile. Since a ratio of about 2 is not too bad we can still con-
sider this approximation roughly satisfied. Finally the integration of the surface
density over the disk yields the result of the fourth line. Unless α is very small
(< 10−10) the total mass of the matter in the disk is still negligible compared to
the mass of the central object.

Principally, there is no reason to believe that one should experience any problems
extending this model to small radii. Yet the standard disk model has a funda-
mental flaw: the source of viscosity remains undetermined within the model. One
might try to explain viscosity by MRI. In this case small scale magnetic fields
would exert a torque on the annuli of the accretion disk and thus act as an ef-
fective viscosity. However, MRI also amplifies the magnetic fields. Therefore we
should have a strong increase of the magnetic energy when we approach the inner
region. It is likely that these strong magnetic fields will then undergo a topolog-
ical change and become of large-scale structure. Once that happens, these fields
can not be described by an effective viscosity anymore. They will significantly
influence the accretion flow and we will have to face the fact that the standard
disk model becomes invalid.
The goal of the next chapter will be the derivation of the general relativistic MHD
(GRMHD) equations. In Chapter 4, we establish a model of the accretion flow
in the close vicinity of the central object to explain the formation of relativistic
outflows or jets. It is based on the GRMHD equations and includes magnetic
fields explicitly.



44 CHAPTER 2. MHD AND THE STANDARD DISK



Chapter 3

General Relativistic
Magnetohydrodynamic Equations

For the sake of completeness we derive in this chapter the general relativistic
magnetohydrodynamic (GRMHD) equations, adopting the two-temperature de-
scription. We will first introduce the stress-energy tensor and then, by means of
the conservation of energy, derive the GRMHD equations, suitable to describe
the accretion flow in the vicinity of a compact object. We will neglect viscous
contributions to the stress-energy tensor, since magnetic fields suppress the gen-
eration of turbulence (see Hujeirat, 2004). In this case the equations governing
the accretion flow are the Euler equations and Maxwell’s equations instead of the
Navier-Stokes equations.
Thereafter the GRMHD equations will be reduced to the case of a stationary, ax-
isymmetric flow in the equatorial plane of the Kerr-spacetime. The components
of velocity and electromagnetic field will be expressed in the basis of the ZAMO
tetrad.

In the following we will make use of the Einstein summation convention, i.e.
an implicit sum over spacetime coordinates is understood for repeated upper and
lower indices. In the case of coordinates (x0, x1, x2, x3), say, a term of the form
aµbµ corresponds to:

aµbµ = a0b0 + a1b1 + a2b2 + a3b3. (3.1)

3.1 The Stress-Energy Tensor

The stress-energy tensor takes a central role in the general theory of relativity,
since it represents all sources of mass and energy that determine the geometry of

45
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spacetime in Einstein’s equations1. These equations read:

G =
8πG

c4
T, (3.2)

where G is the Einstein tensor, G is Newton’s constant of gravitation and c is the
speed of light. The Einstein Tensor is completely determined by the geometry
of spacetime. Further, it is compatible with the conservation of energy which is
given by:

∇ · T = 0 ⇔ ∇ · G = 0. (3.3)

Hence, the Einstein tensor is given by the unique, divergence-free combination of
the Ricci tensor R, Ricci scalar R and metric g,

G = R− 1

2
gR. (3.4)

The Ricci tensor and scalar are derived from the Riemann tensor which describes
the curvature of spacetime (see e.g. Misner et al., 1973, for further details).
We assume that the total mass in the accretion disk is much smaller than the
mass of the central black hole and thus self-gravitation of the flow is negligible.
This means that we do not have to solve Einstein’s equations for the complete
system consisting of black hole plus accretion flow. Instead we choose the Kerr
metric to describe spacetime. It is an axisymmetric vacuum solution of Einstein’s
equations, i.e. G = 0.
The equations determining the motion of the plasma will be derived by means
of the energy conservation condition ∇ · T = 0. In order to write down these
equations, though, we first need to know the stress-energy tensor. There are four
forms of energy that contribute to it:

1. the stress-energy tensor for a perfect fluid containing the rest-mass- and
internal energy density and pressure

2. viscous stresses caused by compression (bulk viscosity) and heat generation
by differential rotation (shear viscosity)

3. heat fluxes that move energy through the fluid by heating and cooling

4. electric and magnetic fields generated by the motion of charged particles

In our model the inner region of the accretion disk is threaded by large-scale
magnetic fields that are in excess of thermal equipartition. These fields will be
strong enough to suppress the generation of turbulence and hence the source of
viscous dissipation. We will therefore neglect the contributions of viscosity. The
stress-energy tensor then consists of the three parts:

T = TP + TH + TEM . (3.5)

1The cosmological constant is assumed to equal zero.
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TP , the stress-energy tensor of a perfect fluid, is given by:

TP
µ
ν = ρ

H
c2
ẋµẋν + δµνP, (3.6)

where ρ, H and P are the density, specific enthalpy and pressure, respectively.
ẋ = dx/dτ is the four-velocity of the plasma and τ is its proper time. The specific
enthalpy is given by:

H = c2 + E +
P

ρ
, (3.7)

where E is the internal energy per mass. The rest-mass density is simply given
by the particle number density n times particle mass m: ρ = nm2. P comprises
gas, radiation and turbulent pressure but not magnetic pressure. The latter is
contained in the electromagnetic stress-energy tensor.
Heating and cooling enters the stress-energy tensor by:

TH
µ
ν = qµ

ẋν
c2

+
ẋµ

c2
qν , (3.8)

where q is the heat flux vector which describes energy fluxes caused by various
heating and cooling processes. q is purely spatial i.e. perpendicular to the fluid
worldlines: ẋ ·TH = 0. The most relevant processes in accretion flows are cooling
by bremsstrahlung, comptonization and synchrotron radiation as well as heating
by viscous dissipation and magnetic diffusivity. Other processes that cause heat
flux are Coulomb coupling between the electrons and ions, adiabatic compression
and heat conduction (Hujeirat, 2004).
The electromagnetic stress-energy tensor accounts for the energy content of the
electromagnetic field, stresses exerted on the fluid by Lorentz forces and ohmic
heating caused by electric currents running through a resistive plasma. This part
is given in terms of the electromagnetic field strength tensor F that contains the
components of the electric and magnetic fields. It will be defined properly in the
next section and discussed together with Maxwell’s equations.
The electromagnetic part is given by:

TEM
µ
ν =

1

µ0

(
F µρFνρ −

1

4
δµνF

αβFαβ

)
. (3.9)

For completeness we quote now the full stress-energy tensor:

T µν = ρ
H
c2
ẋµẋν + δµνP + qµ

ẋν
c2

+
ẋµ

c2
qν +

1

µ0

(
F µρFνρ −

1

4
δµνF

αβFαβ

)
. (3.10)

2In the case of a multi-component fluid one simply has ρ =
∑
i

nimi.
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3.2 Derivation of the GRMHD Equations

The governing equations of the accretion flow are the GRMHD equations. The
Euler equations can be derived by means of the vanishing divergence of the stress-
energy tensor (3.3). It is a set of four independent equations. One can take the
projection parallel and orthogonal to the timelike four-velocity ẋ to obtain the
internal energy equation and the momentum equations, respectively:

ẋ · (∇ · T ) = 0, (3.11)

h · (∇ · T ) = 0, (3.12)

where hµν = gµν+ẋµẋν/c2 is the projection tensor on the hypersurface orthogonal
to ẋ. Instead of h · (∇ · T ), it is also possible to directly take the three spatial
components of ∇ · T as momentum equations. It will be more convenient in our
case to make use of this possibility.
We assume that in the innermost part of the accretion disk there is a boundary
layer of thickness ≈ 10 − 20 Schwarzschild radii where magnetic fields are in
excess of thermal equipartition. The jet launching region, on the other hand,
is supposed to be a geometrically thin transition layer above the disk surfaces
where the magnetic diffusivity is very large. Hence, we will have to describe
the evolution of the magnetic fields to get a complete picture of accretion flow.
Therefore we will derive the general relativistic version of the resistive induction
equations.
The electromagnetic field strength tensor already appeared in the stress-energy
tensor and will be defined properly in this section. We start with Maxwell’s
equations: their Newtonian form has been quoted in Section 2.1, page 35. We
will confine ourselves to special relativity for a moment and introduce the four-
vector potential A = (A0, ~A) by:

~E

c
= −∂0

~A− ~∇A0 (3.13)

~B = ~∇× ~A, (3.14)

where ∂0 = 1/c ∂t in special relativity. One can now define the electromagnetic
field strength tensor by:

Fµν = ∂µAν − ∂νAµ, (3.15)

where the greek indices adopt the values (0, 1, 2, 3). The antisymmetry of the
field strength tensor is manifest. One can also see that in the rest frame of the
fluid the magnetic and electric field components are given by:

F 0i =
Ei

c
, Fjk = ε0jkiB

i, (3.16)
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or in matrix notation:

(Fµν) =


0 −E1

c
−E2

c
−E3

c
E1

c
0 B3 −B2

E2

c
−B3 0 B1

E3

c
B2 −B1 0

 . (3.17)

We move directly to curved spacetime and rewrite the special relativistic expres-
sion (3.15) in an equivalent, yet general relativistic manner3:

Fµν = ∇µAν −∇νAµ, (3.18)

where ∇ indicates covariant differentiation. We define the four-vector of the
current density by j = (cρ,~j). The general relativistic version of Maxwell’s
equations then becomes:

∇µF
µν = −µ0j

ν (3.19)

εµνρσ∇νFρσ = 0, (3.20)

where ε is the totally antisymmetric Levi-Civita symbol. Analogous to the New-
tonian case we want to introduce Ohm’s law now. Unfortunately it can be very
complicated in general relativity (for a detailed treatment see Meier, 2004). In
order to have any hope to obtain an analytic solution to the GRMHD equations,
we have to settle for its most simple version. Hence, we make the approximation
that:

µ0ηMj
ν = −ẋµF µν . (3.21)

This is the natural generalization of the Newtonian version (2.12). We will now
write down the resistive induction equations in the form of an evolution equation
for the field strength tensor. Using (3.20) we obtain:

dFµν
dτ

= ∇ẋFµν

= ẋρ∇ρFµν

= −ẋρ∇νFρµ − ẋρ∇µFνρ

= Fρµ∇ν ẋ
ρ + Fνρ∇µẋ

ρ −∇ν (ẋρFρµ)−∇µ (ẋρFνρ)

= 2Fρ[µ∇ν]ẋ
ρ − 2∇[µ

(
ẋρFν]ρ

)
, (3.22)

where [ ] indicates antisymmetrisation. Using (3.21), we arrive at the final ex-
pression:

1

c

dFµν
dτ

= 2Fρ[µ∇ν]ẋ
ρ − 2∇[µ

(
gν]αµ0ηMj

α
)
. (3.23)

3Due to the antisymmetry of the field strength tensor this expression is equivalent to its
special relativistic version (3.15).
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All Christoffel symbols cancel out if a coordinate basis is used. This becomes
obvious if one derives this equation using the language of differential forms. Only
ordinary partial derivatives are left and (3.23) takes the following form:

ẋρ∂ρFµν = Fρµ∂ν ẋ
ρ − Fρν∂µẋρ − ∂µ (gναµ0ηMj

α) + ∂ν (gµαµ0ηMj
α) . (3.24)

This is the general relativistic version of the resistive induction equations. One
can check that this reduces to the ordinary classical version of the induction
equations (2.16) if one uses the relation (3.16) for the electric and magnetic fields
and sets all electric field components to vanish. (3.24) contains three additional
equations determining the evolution of the electric field components. Yet it will
be much simpler to use (3.21) to recover the electric fields:

ẋtF
tν = −ẋiF iν − µ0ηMj

ν . (3.25)

Now we turn to the other five equations determining the evolution of the fluid4.
One equation that can be quoted immediately is the continuity equation:

∇µ (ρẋµ) = 0. (3.26)

Since the rest mass density ρ equals particle mass times particle number density
ρ = mn the continuity equation states that the particle number density in a given
volume is conserved. This is the case as long as we do not take nuclear reactions
into account.
The stress-energy tensor is given by (3.10). Before we proceed further we will
take a look at the divergence of its electromagnetic part ∇µT

µ
EM ν alone:

∇µT
µ

EM ν =
1

µ0

∇µ

(
F µρFνρ −

1

4
δµνF

αβFαβ

)
=

1

µ0

Fνρ∇µF
µρ +

1

µ0

F µρ

(
∇µFνρ −

1

2
∇νFµρ

)
︸ ︷︷ ︸

= 1
2
Fµρ·(3.20)=0

=
1

µ0

Fνρ∇µF
µρ

= −Fνρjρ. (3.27)

The second term in the second line vanishes because it can be reformulated to
equal (3.20), the homogeneous part of Maxwell’s equations. In the last line we
have used (3.19). The divergence of the full stress-energy tensor then becomes:

∇µT
µ
ν = ∇µ

(
ρ
H
c2
ẋµẋν

)
+∇νP +∇µ (qµẋν + ẋµqν)− Fνρjρ = 0. (3.28)

4Like in Section 2.2 this set of equations should be closed by additional constraints, i.e. an
equation of state or a model of the fluid.
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Making use of (3.21), (3.26) and of

ẋν∇µxν =
1

2
∇µẋ

2 =
1

2
∇µ(−1) = 0

we can quote the energy equation (3.11):

ρ∇ẋE = −PΘ + µ0ηMj
2 +

∑
i

(±Λi) , (3.29)

where Θ = ∇· ẋ is the volume expansion in four-dimensional spacetime. The first
term on the right-hand side of (3.29) accounts for heat generation by compres-
sion while the second term describes ohmic heating by electric currents running
through the fluid. The Λi are heating- and cooling functions that represent all
terms containing the heat flux vector q, namely:

Λcon =̂ heat conduction
Λie =̂ Coulomb coupling between electrons and ions
Λsyn =̂ cooling by synchrotron emission
ΛB =̂ Bremsstrahlung-cooling
ΛC =̂ cooling by inverse Compton scattering

(3.30)

The term ηMj
2 in (3.29) will also be captured by a heating function, ΛOhm, in

regions where we the ideal MHD approximation is invalid.
The three spacelike components of (3.28) yield the momentum equations. In the
vicinity of the central object gravity is the most dominant force. We will therefore
neglect thermal contributions to the equations of motion, i.e. we set H = c2 and
q = 0 in the momentum equations (similar to the condition of negligible specific
heat in Novikov and Thorne, 1973; Page and Thorne, 1974). Using (3.26) we
obtain:

ρ∇ẋẋν = −∇νP + Fνρj
ρ. (3.31)

Now we have derived the complete set of the GRMHD equations. To recapitulate
we will quote the results again:

The Continuity Equation: ∇µ (ρẋµ) = 0
The Energy Equation: ρ∇ẋE = −PΘ + µ0ηMj

2 +
∑

i (±Λi)
The Momentum Equations: ρ∇ẋẋµ = −∇µP + Fµνj

ν

The MHD Equations: ∂ẋFµν = 2Fρ[µ∂ν]ẋ
ρ − 2∂[µ

(
gν]ρµ0ηMj

ρ
)

(3.32)
We have written these equations in a very compact form that allows for general
manipulations in a very simple manner. In order to perform any specific calcu-
lations, however, we will have to rewrite them into a more explicit form. Let g
be the determinant of the metric and

Θ = 1√
|g|
∂µ

(√
|g|ẋµ

)
jρ = − 1

µ0

√
|g|
∂µ

(√
|g|F µρ

) (3.33)
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the volume expansion and electric current density, respectively, then the GRMHD
equations read:

The Continuity Equation:

1√
|g|
∂µ

(√
|g|ρẋµ

)
= 0 (3.34)

The Momentum Equations:

ρẋµ∂µẋα = −∂αP +
1

2
ρẋµẋν∂αgµν + Fαρj

ρ (3.35)

The Energy Equation:

ρẋµ∂µE = −PΘ +
∑
i

(±Λi) (3.36)

The Induction Equations:

ẋρ∂ρFµν = Fρµ∂ν ẋ
ρ − Fρν∂µẋρ − ∂µ (gναµ0ηMj

α) + ∂ν (gµαµ0ηMj
α) (3.37)

The Electric Field Equations (Ohm’s Law):

ẋtF
tν = −ẋiF iν − µ0ηMj

ν (3.38)

Now the GRMHD equations have been rewritten into a form that can be readily
applied to any specific model. We have included (3.25) for later use.

3.3 The Governing Equations

In the last section we have presented the GRMHD equations. Now we want to
reduce them to a form appropriate to elaborate the new model. In the following
we will assume that the central object is a rotating black hole since the most en-
ergetic jets are believed to originate from their vicinity. This is not a requirement
of the model, though. The basic assumptions of the model are independent of
the central object. We assume that the mass of the black hole greatly exceeds the
total mass of the accretion disk so the spacetime can be approximately described
by the Kerr metric. Further, we assume that the disk lies in the equatorial plane
and the system is reflection-symmetric. In the Newtonian model the domain of
interest was geometrically thin (Hujeirat, 2004) thus we stay close to the equato-
rial plane: θ − π/2 ≈ 0. Since we expect this assumption to hold in the general
relativistic regime we approximate the Kerr-metric by:

g = −α2c2dt2 +$2 (dϕ− ωdt)2 +
r2

∆
dr2 + r2dθ2, (3.39)
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where the metric functions in the equatorial plane, correct up to order (θ − π/2)2,
read:

α =

√
∆

$
(3.40)

$ =
Σ

r
(3.41)

ω =
2r2

gcar

Σ2
(3.42)

Σ =
√
r4 + r2

ga
2r2 + 2r3

ga
2r (3.43)

∆ = r2 − 2rgr + r2
ga

2, (3.44)

where rg = GM/c2 is the gravitational radius, M is the mass of the central object
and a ∈ [−1, 1] is the non-dimensional Kerr-parameter.
We want to study time independent, axisymmetric accretion flows. Hence, we
have ∂t = ∂ϕ = 0. We use the tetrad system of the zero angular momentum
observer (ZAMO, see e.g. Camenzind, 2007). In the case of the Kerr metric
(3.39) the sets of basis one-forms ea and vectors ea read:

e0 = αcdt e0 =
1

αc
(∂t + ω∂ϕ)

e1 =
r√
∆
dr e1 =

√
∆

r
∂r

e2 = rdθ e2 =
1

r
∂θ

e3 = $ (dϕ− ωdt) e3 =
1

$
∂ϕ.

(3.45)

We will distinguish between the ZAMO frame and the coordinate frame by using
the numbers (0, 1, 2, 3) for the former and letters (t, r, θ, ϕ) for the latter. By
means of the ZAMO frame we can define the components of the electric and
magnetic fields as:

Er = cF 01 Br = F23

Eθ = cF 02 Bθ = F31

0 = F 03 Bϕ = F12.
(3.46)

The vanishing of F 03 for arbitrary r, θ is equivalent to the vanishing of Ftϕ. The
latter can be made manifest by writing Ftϕ in terms of the four-vector potential
(3.18):

Ftϕ =
1

c
∂tAϕ − ∂ϕAt. (3.47)

In the case of stationarity and axisymmetry this automatically yields Ftϕ = 0.
Now we can express the components of the field-strength tensor in the coordinate
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frame in terms of the electric and magnetic field components:

Ftr = − r

$c
Er − ωr

αc
Bθ F tr =

$

rc
Er

Ftθ = −αr
c
Eθ +

ω$r

c
Br F tθ =

1

αrc
Eθ

Frθ =
r2

√
∆
Bϕ F rθ =

√
∆

r2
Bϕ

Fϕr =
r

α
Bθ Fϕr =

ω$

rc2
Er +

α

r
Bθ

Fθϕ = r$Br F θϕ = − ω

αrc2
Eθ +

1

r$
Br.

(3.48)

The electric current density j then becomes:

jt =
1

µ0cr2
∂r (r$Er) +

1

µ0cαr
∂θE

θ (3.49)

jr =

√
∆

µ0r2
∂θB

ϕ (3.50)

jθ = − 1

µ0r2
∂r

(√
∆Bϕ

)
(3.51)

jϕ =
1

µ0r2
∂r

(rω$
c2

Er + αrBθ
)

+
1

µ0

∂θ

(
ω

αrc2
Eθ − 1

r$
Br

)
. (3.52)

Next we turn to the four-velocity of the plasma:

ẋ = ṫ∂t + ṙ∂r + θ̇∂θ + ϕ̇∂ϕ

= γ
(
ce0 + vre1 + vθe2 + vϕe3

)
. (3.53)

The vi in the second line are the velocities that a ZAMO would measure. On the
contrary to the standard disk solution we have to include a small vertical drift
vθ � vr, vϕ. We will neglect this vertical drift wherever possible.
The new model will be explained in detail in the next chapter. So far it should
only be said that Alfvén waves propagating along the lines of a strong, poloidal
magnetic field serve as mechanism for transport of angular momentum in the
vertical direction. If the magnetic field energy is in excess of thermal equipartition
this process can operate on the dynamical time scale or even faster (Hujeirat,
2004). Hence, we expect the orbital velocity of the disk matter to be strongly
reduced, causing it to fall very rapidly towards the central object. Calculations
show that the accreted material passes the event horizon in the radial direction,
traveling with the speed of light (Camenzind and Mueller, 2004). Thus we do
not expect the radial velocity vr to maintain negligible compared to the orbital
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velocity vϕ.
The velocity components and Lorentz-factor are given by:

vr =
r

α
√

∆

dr

dt

vθ =
r

α

dθ

dt

vϕ =
$

α
(Ω− ω) , Ω =

dϕ

dt

γ = α
dt

dτ
≈ 1√

1− vr2

c2
− vϕ2

c2

.

(3.54)

Now we are ready to quote the full set of axisymmetric, time independent equa-
tions governing the accretion flow:

The Continuity Equation:

1

r2
∂r

(
rρ
√

∆γvr
)

+
1

r
∂θ
(
ργvθ

)
= 0 (3.55)

The Radial Momentum Equation:

ργvr∂r (γvr) = −∂rP +
1

2
ρ
{
c2ṫ2∂rgtt + 2cṫϕ̇∂rgtϕ + ϕ̇2∂rgϕϕ

}
−

− Bϕ

µ0

√
∆
∂r

(√
∆Bϕ

)
− Bθ

µ0

√
∆
∂θ

(ω$
αc2

Eθ −Br
)
−

− Bθ

µ0αr
∂r

(rω$
c2

Er +
r

α
Bθ
)

+ (3.56)

+
1

µ0c2

(
Er +

ω$

α
Bθ
)( 1

r$
∂r (r$Er) +

1√
∆
∂θE

θ

)
The Vertical Momentum Equation:

0 = −∂θP + θγ2ρ

(
r2
ga

2

r2
vr2 − vϕ2

S2

)
− Bϕ

µ0

∂θB
ϕ +

+
Br

µ0

∂θ

(ω$
αc2

Eθ −Br
)

+
$

µ0r
Br∂r

(rω$
c2

Er +
r

α
Bθ
)

+

+
1

µ0c2

(
Eθ − ω$

α
Br
)(α

r
∂r (r$Er) + ∂θE

θ
)

(3.57)
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The Angular Momentum Equation:

ργvr
√

∆

r
∂rl =

$

µ0r

(
Br∂r

√
∆ +Bθ∂θ

)
Bϕ (3.58)

The Energy Equation for the Electrons:

ργvr
√

∆

r
∂rEe = −Pe

r2
∂r

(
r
√

∆γvr
)

+ Λcon+ ΛOhm+ Λie−Λsyn−ΛB−ΛC (3.59)

The Energy Equation for the Ions:

ργvr
√

∆

r
∂rEi = −Pi

r2
∂r

(
r
√

∆γvr
)

+ Λcon + ΛOhm − Λie (3.60)

The Radial Induction Equation:

0 = ∂θ
(
$γvrBθ

)
+ ∂θ

(
ηM

(
$3

rc2
Er∂rω +

$2

r2
∂r
(
αrBθ

)
− $

r
∂θB

r

))
(3.61)

The Vertical Induction Equation:

0 = −∂r
(
$γvrBθ

)
− ∂r

(
ηM

(
$3

rc2
Er∂rω +

$2

r2
∂r
(
αrBθ

)
− $

r
∂θB

r

))
(3.62)

The Toroidal Induction Equation:

r√
∆
∂tB

ϕ =
1

r
∂r (rα (vϕBr − vrBϕ)) +

1

$
∂θ
(
vϕBθ

)
+$Br∂rω +

+
1

r
∂r

(
αηM
γ

∂r

(√
∆Bϕ

))
+

1

r$
∂θ

(
ηM
γ
∂θB

ϕ

)
(3.63)

The Equation for the Radial Electric Field:

Er = vϕBθ +
ηM
γ

1

r
∂θB

ϕ (3.64)

The Equation for the Vertical Electric Field:

Eθ = vrBϕ − vϕBr − ηM
γ

1

r
∂r

(√
∆Bϕ

)
(3.65)

Additionally, we also include one component of the homogeneous Maxwell equa-
tions. It will be needed for two-dimensional plots of the poloidal magnetic-field:

∂r (r$Br) + ∂θ

( r
α
Bθ
)

= 0. (3.66)
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We want to consider stationary, i.e. time independent scenarios. Yet we have
included a partial derivative with respect to time in equation (3.63). This will be
useful when we estimate the time scale on which this field component is generated.
In the vertical momentum equation we have made the substitution:

S :=

(
1 +

rga

r2

ω

c

((
r2 + r2

ga
2
)(

1 +
c2

vϕ2

)
− 2rga

√
∆
c

vϕ

))− 1
2

. (3.67)
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Chapter 4

A General Relativistic Model for
Jet Formation

We have discussed the standard disk solution in Chapter 2 and derived and simpli-
fied accordingly the GRMHD equations in Chapter 3. In this chapter we discuss
the new model for the inner region of the accretion disk. Before we proceed to
solve the reduced GRMHD equations, though, the reader should have a clear
picture of the model. Therefore the first section of this chapter is dedicated to a
complete qualitative description.
In principal the model can be applied to accretion flows around black holes, neu-
tron stars, white dwarfs or YSO’s. In this work the emphasis is on jet formation
around black holes, especially rotating black holes, since their vicinity lies in the
deepest gravitational potential well where the most energetic outflows can be
launched. A black hole is different from other accretors because it has no surface
and does not radiate. If one includes effects due to a hard surface as well as
heating by radiation from the central object, the model proposed in this work
can be readily applied to different types of accretors.

4.1 A qualitative Description of the Model

Consider an accretion disk around a central black hole. The black hole dominates
the dynamics in the disk gravitationally. At large distance from the center the
flow is well described by the standard disk solution that was discussed in Section
2.2. Small scale magnetic fields cause turbulent motion thus generating an effec-
tive viscosity via the MRI (Balbus and Hawley, 1991). Suppose that at one point
the magnetic energy is below equipartition with the thermal energy of the flow. In
this case the ratio of magnetic- to gas pressure satisfies β = Pmag/Pgas � 1. The
flow radiates by viscous dissipation due to turbulent motion in the plasma. MRI
amplifies magnetic fields on the dynamical time scale, though. Hence the mag-
netic energy increases rapidly. Reconnection of magnetic flux tubes will probably

59
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Figure 4.1: Schematic illustration of the model

Ideal MHD is assumed within the disk so magnetic lines of force are dragged with the accretion
flow. A geometrically thin, super-Keplerian rotating and highly diffusive transition layer forms
on the surfaces of the disk. The matter in the transition layer is centrifugally accelerated
outwards, advecting a part of the toroidal magnetic field component. Thus a wind is formed
that, at large radii, can be collimated to a jet by Lorentz forces.
Credit: Hujeirat (2004)

ensure that β < 1. However, there is no reason to expect that β < 1 is strictly
valid in the whole accretion flow. MRI in combination with Parker instability,
reconnection and inward motion results in large-scale, poloidal magnetic fields
with magnetic energy around thermal equipartition (Hujeirat et al., 2003). The
conductivity of the fluid particles is expected to be very high, hence we assume
the ideal MHD approximation to hold in the disk. ”Freezing” of the magnetic
field lines into the disk plasma will further increase the magnetic energy as the
central black hole is approached. Super equipartition magnetic fields will suppress
the generation of turbulence which is the quintessence of the standard α-disk. In
the absence of turbulence there is no viscous torque and also no source of local
radiation. Therefore the disk will become much fainter than a standard disk. The
question to be answered is: what is the nature of an accretion flow that proceeds
under β ≥ 1 and includes a highly energetic outflow?
Let rtr be the radius where magnetic fields are in equipartition with the thermal
energy. Exterior to rtr we approximate the flow by the standard α-disk model. In-
terior to rtr magnetic fields are predominantly poloidal and of large-scale topology
and the ideal MHD approximation holds. In this case the magnetic lines of force
will be dragged with the motion of the plasma particles. This leads to deforma-
tion of the field lines and causes torsional Alfvén waves. Alfvén waves transport
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Figure 4.2: The vertical profile of Ω and ∂θΩ

Angular momentum from the disk deforms the vertical profile of Ω leading to a strong gradient
∂θΩ. A toroidal magnetic field Bϕ is induced that undergoes a sign change where Ω achieves a
maximum. This leads to the intersection and subsequent reconnection of flux tubes of opposite
sign. In the following the vertical gradient of Ω is strengthened even further.

angular momentum in the vertical direction on the time scale tA = Hd/v
θ
A where

Hd is the disk half-thickness and vA is the Alfvén velocity along poloidal field lines
(properly defined in (4.40), page 71). Since magnetic fields are in excess of ther-
mal equipartition, tA is of the same order as the dynamical time scale tdyn = r/vϕ

making Alfvén waves the dominant angular momentum carrier. The larger the
value of rtr the more rotational energy is extracted from the disk. If rtr is too
large, on the other hand, magnetic fields will become strong enough to terminate
accretion by magnetic pressure. Hence, it is estimated that rtr = O(10− 20 rS),
where rS is the Schwarzschild radius (Hujeirat et al., 2003; Hujeirat, 2004).
Supplied with angular momentum from the disk, the matter in higher latitudes
will start to rotate faster inducing a vertical gradient ∂θΩ of the angular velocity
of the kind depicted in Fig. 4.2. At a certain latitude Ω achieves a maximum
so ∂θΩ changes sign. Inspection of the toroidal induction equation (3.63) reveals
that, due to the geometrical thinness of the accretion disk, the dominant term in
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the advective part is the one containing Bθvϕ ∝ ∂θΩ. Hence, the vertical gradi-
ent ∂θΩ induces a toroidal magnetic field. Where ∂θΩ changes sign toroidal flux
tubes of opposite sign are induced. These flux tubes will frequently intersect and
subsequently reconnect the magnetic field lines. Thus reconnection terminates
the propagation of Alfvén waves and traps angular momentum transported with
them at this latitude. However, this will supply the matter with even more an-
gular momentum leading to even faster rotation and a stronger vertical gradient
∂θΩ. Reconnection of the toroidal field will become even more frequent and the
trapping of Alfvén waves even more efficient. Consequently, Alfvén waves can
not deposit angular momentum in the corona or the interstellar medium but in
a geometrically thin layer, the transition layer (TL), on the surfaces of the accre-
tion disk.
The matter in the TL will rotate with super-Keplerian velocities and become
potentially unbound.
An accretion flow can not maintain Keplerian rotation if threaded by strong mag-
netic fields that extract angular momentum on a time scale comparable to tdyn.

Let us suppose that Ω = cΩK ∝ r−
3
2 , where ΩK is the Keplerian angular velocity

and c a constant. If c = 1 the matter is in Keplerian rotation implying that
the accretion process operates very slowly. Consequently the cooling time scales
will be shorter than the dynamical time scale. In this case the accretion flow
turns into a cool disk, threaded by super-equipartition magnetic fields which are
likely to terminate accretion. If c < 1 the matter is in sub-Keplerian rotation
but able to maintain Ω ∝ r−

3
2 . Hence, the amount of rotational energy extracted

per annulus from the disk can not be too large so rtr must move to larger radii
which was already excluded above (Hujeirat, 2004). Calculations with the im-
plicit solver IRMHD3 show that the angular velocity in TL obeys the power law
Ω ∝ r−

5
4 (Hujeirat et al., 2002, 2003). In this model we make the basic assump-

tion that the angular velocity adopts the profile Ω ∝ r−
5
4 in the disk and in the

TL.

So far we have established the formation of a diffusive, geometrically thin, super-
Keplerian rotating transition layer on the surfaces of the disk. The matter in
the TL is provided by the disk by means of a slow vertical drift. Due to the
high reconnection rate and inefficient cooling the ions the TL will achieve very
high temperatures. The super-Keplerian rotating plasma will be accelerated by
centrifugal forces, forming a radial wind that is dominated by virial-hot ions. A
fraction of the toroidal magnetic field in the TL is advected with the wind. At
large distances the flow ceases to be diffusive and the magnetic field redirects and
collimates the outflow into a jet (see Fig. 4.3).
Numerical calculations of Hujeirat et al. (2002) have shown that a fraction of
roughly Ṁw/Ṁd ≈ 1/20 of the inflowing matter reappears in the wind.
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Figure 4.3: Collimation of the
outflowing wind on large scales

An outflowing wind is launched in the
transition layer. It advects a frac-
tion of the toroidal magnetic field. At
large radii the flow is no longer diffu-
sive. The toroidal magnetic field ex-
erts Lorentz-forces on the plasma and
thus redirects the wind to form a col-
limated jet on large scales.
Credit: Hujeirat (2004)

Let us summarize the properties of the accretion flow in the close vicinity of the
central object:

• large-scale, (super-) equipartition, poloidal magnetic fields that extract an-
gular momentum on the dynamical time scale

• this implies sub-Keplerian rotation in the disk and an Ω-profile like the one
depicted in Fig. 4.2

• a highly diffusive, geometrically thin, super-Keplerian rotating transition
layer where outflows are launched

These properties are the foundation of the model. The subject of the next two
sections will be to deliver an analytic description of it.

4.2 Preparations

In this section we will discuss two basic assumptions of the model, namely the
radial profiles of the poloidal magnetic field (Br, Bθ) and the angular velocity Ω.
First we have to make some useful definitions, though.
Let Hd be the disk half thickness. At larger radii, the accretion disk is well
described by a standard α-disk. Interior to a transition radius rtr the accretion
flow changes corresponding to the model described in Section 4.1. In the standard
disk model we had Hsd ∝ r

9
8 ≈ r for the outer solution, Hsd ∝ r

21
20 ≈ r for the

middle solution and Hsd ≈ const. for the inner solution (see Section 2.2). Since
we stay close to the central object, we can safely set Hd ∝ r. If the inner solution
does not exist this will surely be justified. However, Hd ∝ r appears to be a
reasonable continuation even if the inner solution does exist since, due to the
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lack of viscous dissipation, the disk will be colder and therefore thinner than a
standard disk.
Let Hw be the thickness of the transition layer (TL). We define Hd and Hw via:

Hd = r sin θd ≈ θd r (4.1)

Hw = r (sin θw(r)− sin θd) ≈ (θw(r)− θd) r := δθ(r) r, (4.2)

where θd is a constant while θw is an unspecified function of r. Both the disk as
well as the TL are assumed to be geometrically thin, i.e. Hd/w � r. Analogous
to the Newtonian case we define the surface densities Σd and Σw

Σd =

π
2

+θd∫
π
2
−θd

e2ρ ≈

π
2

+θd∫
π
2
−θd

dθ rρ ≈ 2Hdρ (4.3)

Σw =

π
2

+θw∫
π
2

+θd

e2ρ ≈ (θw − θd) rρ ≈ Hwρ (4.4)

and mass averaged radial velocities

< γvr >d =
1

Σd

π
2

+θd∫
π
2
−θd

e2ργvr ≈ 1

Σd

π
2

+θd∫
π
2
−θd

dθ rργvr ≈ γdv
r
d (4.5)

< γvr >w =
1

Σw

π
2

+θw∫
π
2

+θd

e2ργvr ≈ γwv
r
w. (4.6)

Next we turn to the continuity equation to derive the accretion rate Ṁ :

0 = ∂t

(
ρ
γ

α

)
+

1

r2
∂r

(
r
√

∆ργvr
)

+
1

r
∂θ
(
ργvθ

)
. (4.7)

We will now integrate over the three-dimensional hypersurface that makes up the
accretion disk while averaging over an infinitesimal time slice δt, i.e. we act on
(4.7) with the operator:

1

δt

t+δt∫
t

dt

∫
Disk

drdθdϕ
√
|g|, (4.8)
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where δt is chosen such that it is smaller than the time scale for relevant changes
in the mass-accretion rate1. This allows us to approximate that

1

δt

t+δt∫
t

dt ≈ 1 and hence
1

δt

t+δt∫
t

dt ∂t ≈ ∂t. (4.9)

Defining the total mass inside a given three-dimensional, spacelike hypersurface
V , averaged of the time slice δt, by

M :=
1

δt

t+δt∫
t

dt

∫
V

drdθdϕ r2 ρ
γ

α
, (4.10)

we obtain from (4.7):

0 =
1

δt

t+δt∫
t

dt

∫
Disk

drdθdϕ r2

(
∂t

(
ρ
γ

α

)
+

1

r2
∂r

(
r
√

∆ργvr
)

+
1

r
∂θ
(
ργvθ

))

≈ ∂tM︸︷︷︸
=:Ṁ

+2π

π
2

+θd∫
π
2
−θd

dθ r
√

∆ργvr + 4π

r∫
dr rργvθ

∣∣∣∣∣
θ=π

2
+θd

(4.11)

⇔ Ṁ ≈ −2π
√

∆Σd < γvr >d︸ ︷︷ ︸
=Ṁd

−4π

r∫
dr rρdγdv

θ︸ ︷︷ ︸
=2Ṁw

, (4.12)

In the second term of the last line we have approximated ρ and γ by their the
disk-average. Further, vθ corresponds to the vertical drift at the interface between
the disk and the TL (θ = π/2 ± θd). We arrive at an expression for the total
(constant) accretion rate in terms of the accreting mass flux within the disk and
the outflowing wind in the TL above and below:

Ṁ = Ṁd + 2Ṁw = const. (4.13)

The wind in the TL is also in the radial direction. Hence, we can find a more
simple expression for Ṁw in terms of the radial velocity and surface density in
the TL:

Ṁd = −2π
√

∆Σd < γvr >d (4.14)

Ṁw = −2π
√

∆Σw < γvr >w . (4.15)

1This averaging process is necessary, since
√
|g| = r2 for a four-dimensional spacetime

volume element but
√
|g| = r2/α for a three-dimensional, spacelike hypersurface.
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Now we turn to the basic assumptions that Hujeirat made for his Newtonian
model. The first assumption is that the ideal MHD approximation holds inside
the accretion disk. In this case, the poloidal induction equations reduce to:

0 = ∂θ
(
$γvrBθ

)
(4.16)

0 = −∂r
(
$γvrBθ

)
. (4.17)

Hence, we have found the conserved quantity:

$γvrBθ =: B0 = const. (4.18)

Correspondingly, we can derive the profile of Bθ:

Bθ =
B0

$γvr
, where B0 = $γvrBθ

∣∣
r=rtr

. (4.19)

Thermal equipartition of the poloidal magnetic field at rtr serves as boundary
condition:

Bθ(rtr) =

√
fµ0

k

µmp

ρsd(rtr)Tsd(rtr) (4.20)

where f is the number of degrees of freedom and µ the mean molecular weight
of the plasma particles. ρsd(rtr), Tsd(rtr) correspond to the values of density and
temperature of the standard disk at rtr.
The radial component Br can be derived by means of the vanishing divergence
of the magnetic field (3.66):

∂r (r$Br) + ∂θ

( r
α
Bθ
)

= 0. (4.21)

Integrating over r yields:

r$Br = −
r∫

rtr

dr
r

α
∂θB

θ, (4.22)

where we have assumed that the poloidal field is vertical in the beginning: Br
tr =

0. The poloidal field is dominated by Bθ in the disk whereas it is predominantly
radial in the TL. However, the detailed profile is of Br is not going to be important
for the model, since Bϕ is the most dominant magnetic field component in the
TL (see Section 4.3). Hence, it suffices to make a crude approximation for Br:

Br ≈ 1

r$

(
r

Hd

)2 (
θ − π

2

)(rtr2

αtr
Bθ
tr −

r2

α
Bθ

)
. (4.23)

The second assumption that Hujeirat made was that, considering that Alfvén
waves remove angular momentum from the disk on the dynamical time scale, the
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disk matter can not maintain Keplerian rotation. Interior to rtr strong, large-
scale, poloidal magnetic fields will cause a significant deviation from the standard
disk and force the matter to rotate sub-Keplerian. For the angular velocity he
adopted the power law:

Ω = ΩK,tr

(
r

rtr

)− 5
4

, (4.24)

where the Keplerian angular velocity at the transition radius ΩK,tr serves as
boundary condition. In the case of a Schwarzschild black hole we can just mimic
this procedure. For a Kerr black hole, however, we will have to find a suitable
generalization of (4.24). There is in principle an infinite set of profiles that
meet this requirement. In the following we will consider the accretion flow to
be in co-rotation with the black hole since then the radius of marginal stability
moves closer to the event horizon giving rise to more energetic outflows. The
modification to a flow in counter-rotation is very straight forward, though. We
quote three very straight forward possibilities:

Ω1 =

√
GM

r
5
4 rtr

1
4 + rg

3
2a

(4.25)

Ω2 = ΩK

(
r

rtr

) 1
4

(4.26)

Ω3 = ΩK(rtr)

(
r

rtr

)− 5
4

. (4.27)

All three versions satisfy Ω(rtr) = ΩK(rtr), where ΩK corresponds to the Keple-
rian angular velocity for co-rotating (direct) orbits:

ΩK =

√
GM

r
3
2 + rg

3
2a
. (4.28)

In the TL the matter is supplied with rotational energy from the disk and starts
rotating with super-Keplerian angular velocity adopting the same radial profile
as in the disk. At the inner boundary rB of the TL centrifugal and gravitational
acceleration are balanced and the effective gravity vanishes. As a result the
matter will rotate with the Keplerian angular velocity at this point: Ω(rB) =
ΩK(rB). This allows us to discard (4.27) since it becomes sub-Keplerian for fast
rotating black holes and small r (see Fig. 4.4).
The relative difference between (4.25) and (4.26) peaks at 5% for a = 1 and
rB = rms in the TL and diverges in the limit r → 0 in the disk. 10% deviation
are obtained for r = 2.5 rg for a maximally rotating black hole and rtr = 40 rg.
The deviation decreases rapidly for deacresing a. Hence, we have free choice
between (4.25) and (4.26) for slowly rotating black holes.
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Figure 4.4: The three possible profiles for Ω from equations (4.25)-(4.27)

The profiles are plotted for the TL, using a = 0.99 and rB = rms, where rms is the marginally
stable orbit. One can see that Ω3 is sub-Keplerian for small r. The deviation between Ω1 and
Ω2 is below 10% for most of the parameter space.

For fast rotating black holes, on the other hand, we note that the Boyer-Lindquist-
coordinate frame is a static frame describing a stationary spacetime that rotates
with angular velocity ω. As a consequence freely falling matter is rotating with
ω relative to the coordinate frame. A ZAMO measures then the angular velocity:

Ω̃ = Ω− ω. (4.29)

For large a there will be a radius r∗ where the matter is non-rotating with respect
to ZAMO:

Ω(r∗) = ω(r∗) ⇔ Ω̃(r∗) = 0, (4.30)

i.e. r∗ is the largest, rational root of the equation:

r2

rg2
+ a2 − 2a

(
rtrr

rg2

) 1
4

=

{
0 , if Ω = Ω1

2rga2

r

((
rtr
r

) 1
4 − 1

)
, if Ω = Ω2.

(4.31)

Our assumption is that, interior to r∗, the matter is in free fall:

Ω ≡ ω for r ≤ r∗. (4.32)
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This means that the disk matter keeps rotating with the frame-dragging frequency
ω, relative to the coordinate frame, while Alfvén waves are still extracting angular
momentum. The rotational energy, powering the jet, is then extracted directly
from the central black hole. Yet, the total energy extracted in this way will be
negligible compared to the total rotational energy of the black hole so no spin-
down is taken into account. Instead we treat the frame-dragging potential as an
infinite reservoir of rotational energy.
r∗ increases with increasing a and rtr: If rtr = 40 rg, the radius r∗ is located
in the immediate vicinity of the event horizon for a = 0.6 and it equals 2.3 rg
and 2.5 rg for Ω1 and Ω2, respectively, for a maximally rotating black hole. For
rtr = 400 rg, a = 1 it is roughly equal to 3.3 rg and 3.6 rg, respectively. In this
case, the point of 10% percent deviation between (4.25) and (4.26) is also located
at 3.3 rg. Hence, we conclude that for r ≥ r∗ we have free choice between (4.25)
and (4.26) for fast rotating black holes as well.
We choose (4.25), since it appears to be the most reasonable profile. To sum up,
we quote the angular velocity for the disk and the transition layer:

Ωd =


ΩK rtr ≤ r

√
GM

(
r

5
4 rtr

1
4 + rg

3
2a
)−1

r∗ ≤ r ≤ rtr

ω r ≤ r∗

(4.33)

Ωw =
√
GM

(
r

5
4 rB

1
4 + rg

3
2a
)−1

rB ≤ r. (4.34)

4.3 Constructing the Combined Solution

We have collected everything we need in order elaborate a quantitative formu-
lation of the model. The aim of this section is to find a solution that describes
both the disk and the TL in the vicinity of the central object.
We will proceed in the following four steps to keep things as neat as possible:

• the radial momentum equation

• the continuity- and angular momentum equation

• the vertical momentum equation

• the energy equations

We will derive the profiles of the radial velocity in the first step and the profiles
of the toroidal magnetic field, density and vertical drift velocity in the second
step. Step three is dedicated to the vertical structure of the TL. We will inspect
the geometrical thickness and the magnetic diffusivity. In step four we derive
the profiles of temperature. The discussion and application of the solution is
dedicated to Chapter 5.
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All equations are constrained by the induction equations, of course. The radial
momentum equation will be the only serious differential equation to solve. All
other equations will be merely a matter of algebraic manipulation.

4.3.1 The Radial Momentum Equation

The radial momentum equation was presented in Section 3.56, page 55. For
convenience we quote it again:

ργvr∂r (γvr) = −∂rP +
1

2
ρ
{
c2ṫ2∂rgtt + 2cṫϕ̇∂rgtϕ + ϕ̇2∂rgϕϕ

}
−

− Bϕ

µ0

√
∆
∂r

(√
∆Bϕ

)
− Bθ

µ0

√
∆
∂θ

(ω$
αc2

Eθ −Br
)
−

− Bθ

µ0αr
∂r

(rω$
c2

Er +
r

α
Bθ
)

+ (4.35)

+
1

µ0c2

(
Er +

ω$

α
Bθ
)( 1

r$
∂r (r$Er) +

1√
∆
∂θE

θ

)
.

First we observe that the flow is highly super-sonic. As a consequence we can
drop the ∂rP -term since it is of order ρcS

2/r. Next we show that Bθ and Bϕ are
the most dominant components of the electromagnetic field in the disk and in
the TL, respectively:
According to (3.64) and (3.65) the electric field components are of the order

Er ≈ vϕBθ + vturBϕ (4.36)

Eθ ≈ vrBϕ − vϕBr +
Hw

r

√
∆

r
vturBϕ, (4.37)

where we have approximated ηM ≈ Hwγvtur with Hw the typical vertical length-
scale and vtur the typical velocity of turbulent motion due to reconnection in the
TL.
The last two terms in both expressions can be neglected within the disk (ideal
MHD). Bϕ is a small quantity there regarding the small vertical gradient of Ω
in the equatorial plane (see Section 4.1, page 61). The poloidal magnetic field is
dominated by Bθ. All contributions from electric fields in (4.35) are accompanied
with a factor c−2. Therefore it is save to say that Er/c2 ≈ vϕBθ/c2 � Bθ,
rendering terms containing Er negligible. We can neglect Eθ as well, since Br is
supposed to vanish in the equatorial plane anyway.
In the TL we have the additional contribution of the diffusive terms. Yet, the
same argument is valid for the disk, namely that Er/c2 ≈ vturBϕ/c2 � Bϕ and
analogous for Eθ. In the TL the poloidal field is supposed to be predominantly
radial. Yet, Bϕ will be the strongest magnetic field component due to the steep
vertical gradient of Ω.



4.3. CONSTRUCTING THE COMBINED SOLUTION 71

Thus we drop all electromagnetic terms that do not contain Bθ or Bϕ if we do
calculations in the disk or TL, respectively.
Inside the disk Alfvén waves transport angular momentum along the poloidal
magnetic field lines on the dynamical time scale, i.e.:

tdyn =
r

vϕd
=

Hd

vA
= tA (4.38)

⇒ vA =
Hd

r
vϕd � vϕd , (4.39)

where vA is the Alfén speed and tA is the time scale for vertical propagation of
Alfén waves. In non-relativistic MHD we have vA := B2/

√
µ0ρ. Gedalin (1993)

has derived the corresponding relativistic formula:

vA
2 =

B2

µ0

ρH + B2

µ0

(4.40)

⇔ γA
2vA

2 =
B2

µ0ρH
, where γA :=

1√
1− vA2

c2

. (4.41)

In the disk we can approximate this by:

γA
2vA

2 ≈ Bθ2

µ0ρd
. (4.42)

Inserting (4.39) yields:

Bθ

µ0ρd
=

(
Hd
r

)2
vϕ2

1−
(
Hd
r

)2 vϕ2

c2

� vϕ2. (4.43)

The braces in (4.35) contain terms of order vϕ2. Hence, we can neglect all elec-
tromagnetic terms on the right-hand side within the disk region.
We turn to the TL: the most dominant field component is Bϕ. Thus we drop all
terms that do not contain Bϕ. Concerning the toroidal magnetic field we observe
that the stationarity condition in the TL requires γAv

ϕ
A = γwv

ϕ
w � vesc (Hujeirat,

2004). Yet, the toroidal field is unlikely to be the main driving force since it has
turning points in its vertical profile. The centrifugal and gravitational forces on
the other hand remain strong throughout the disk and the TL. So we drop the
toroidal field-term as well. Again we have only acceleration terms due to gravity
and centrifugal forces left on the right-hand side of (4.35). We make use of the
definitions (3.54) to write:

ṫ =
γ

α

ṙ =

√
∆

r
γvr

ϕ̇ =
γ

α
Ω. (4.44)
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Inserting into (4.35) and rewriting yields:

∂r (γvr)2 =
γ2

α2

(
c2∂rgtt + 2cΩ∂rgtϕ + Ω2∂rgϕϕ

)
. (4.45)

Regarding further that gtϕ = −ωgϕϕ/c and gttgϕϕ − g2
tϕ = −∆ we obtain:

∂r (γvr)2 =
γ2

α2

(
−c2∂rα

2 − 2Ω̃$2∂rω + Ω̃2∂r$
2
)
, (4.46)

where Ω̃ = Ω− ω is the angular velocity that a ZAMO measures.
We note that

∂rv
ϕ2 =

1

α2

(
−c2∂rα

2 − 2Ω̃$2∂rω + Ω̃2∂r$
2
)

+

+2vϕ2∂rΩ

Ω̃
+
(
c2 − vϕ2

)
∂r lnα2. (4.47)

Inserting this expression into (4.46) and writing out the γ-factors explicitly yields:

∂r
vr2

c2 − vr2 − vϕ2
=
∂rv

ϕ2 − 2vϕ2 ∂rΩ
Ω̃
−
(
c2 − vϕ2

)
∂r lnα2

c2 − vr2 − vϕ2
. (4.48)

We can further rewrite this equation to obtain a more convenient expression:

∂rv
r2 = vr2

(
−2∂rv

ϕ2 + 2vϕ2 ∂rΩ
Ω̃

c2 − vϕ2
+ ∂r lnα2

)
+

+∂rv
ϕ2 − 2vϕ2∂rΩ

Ω̃
−
(
c2 − vϕ2

)
∂r lnα2. (4.49)

Thus we have obtained a first order ordinary differential equation for vr2. We
define the auxiliary function F by:

∂r lnF =
2vϕ2 ∂rΩ

Ω̃

c2 − vϕ2
. (4.50)

Now we can rewrite (4.49) to yield:

∂rv
r2 = vr2∂r ln

(
α2F

(
1− vϕ2

c2

)2
)
−
(
c2 − vϕ2

)
∂r ln

(
α2F

(
1− vϕ2

c2

))
.

(4.51)
Normalizing the function F by F0 = 1, where the index ”0” indicates that the
quantity is to be taken at radius r0 = rtr/B in the disk or TL, respectively, we
obtain the general solution for vr2:

vr2 = c2 − vϕ2 − c2

γ2
0

α2

α2
0

F
(
c2 − vϕ2

c2 − vϕ0
2

)2

. (4.52)
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Figure 4.5: Fd and Fw for a = 0.998 and rtr = 40 rg

In the disk Fd is always of order unity for reasonable parameter values while Fw can even reach
10−3 − 10−4 for very rapidly rotating black holes (a ≈ 0.998).

Thus, (4.49) is solved, once we have found the solution for F . In terms of the

variable y = (r/rg)
1
4 , (4.50) can be expressed as

∂y lnF = − 10

y0
2
· 1

y
· 1

y5 + ay0
−1
· y8 − 2ay0y + a2

y5 − y0
−2y3 − 2y + 2ay0

−1
. (4.53)

Making use of the identity

n∏
i=1

1

y − yi
=

n∑
i=1

1

y − yi

n∏
j=1

i 6=j

1

yi − yj
, (4.54)

(4.53) can be readily integrated once the roots yi of the polynomials in the de-
nominator are known. In the case of a Schwarzschild black hole (a = 0), the full
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analytic solution to (4.53) is relatively simple2:

F =

(
2y2y0

2 − 1 +
√

1 + 8y0
4

2y0
4 − 1 +

√
1 + 8y0

4
· 2y0

4 − 1−
√

1 + 8y0
4

2y2y0
2 − 1−

√
1 + 8y0

4

) 5√
1+8y0

4

. (4.56)

For a 6= 0 we obtain:

F = exp

[
− 10

y0
2

10∑
i=1

10∏
j=1

i 6=j

1

yi − yj
· (4.57)

·

(
7∑

k=1

yk − y0
k

k
yi

7−k +

(
yi

7 − 2ay0 +
a2

y0

)
ln
y − yi
y0 − yi

− a2

yi
ln
y

y0

)]
,

where y1, y2, y3 are the three real roots of the equation

y5 − y0
−2y3 − 2y + 2ay0

−1 = 0 (4.58)

and

y4 = −y1 + y2 + y3

2
+

√
y0
−2 − y1

2 + y2
2 + y3

2

2
− (y1 + y2 + y3)2

4

y5 = −y1 + y2 + y3

2
−
√
y0
−2 − y1

2 + y2
2 + y3

2

2
− (y1 + y2 + y3)2

4

yn = −
(
a

y0

) 1
5

e2πin
5 , n ∈ {6, 7, 8, 9, 10}.

(4.59)

For all reasonable parameter values we have y1, y2, y3 ∈ [−2 : 1.5]. There exist
analytic expressions for the roots of (4.58). In all cases where a 6= 0, however,
these expressions are so complicated that the numerical calculation of y1, y2, y3

appears to be the appropriate procedure.
In Section 4.2, page 68 we found that, inside the disk, the matter is in free fall
interior to a radius r∗ implying Fd = const. and vϕd = 0. The radial velocity then
reduces to:

vrd
2 = c2 − c2

γd,tr2

α2

αtr2
Fd,∗

(
1−

vϕd,tr
2

c2

)−2

. (4.60)

2Note: In the Newtonian limit we have

∂r lnF ≈ 5∂rvϕ2

c2 − vϕ2 ⇒ F ≈

(
1− vϕ0

2
/c2

1− vϕ2/c2

)5

≈
(

1− y0−4

1− y−2y0−2

)5

. (4.55)
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Figure 4.6: Profile of the radial velocity in the disk and in the TL

The radial velocity has been plotted for rtr = 40 rg and rB = rms. In the disk the profile
changes only very weakly with a except for the fact that, due to the decreasing event horizon,
smaller radii can be reached. In the TL, on the other hand, the profile strongly depends on a

since it determines the maximal depth of the potential well that matter can escape from.

4.3.2 Conservation of Mass and Angular Momentum

In the last subsection we have obtained profiles for the radial velocity in the disk
and TL, respectively. These can now be used to derive the profiles of density and
toroidal magnetic field from the continuity- and angular momentum equation,
respectively. The former reads:

1

r2
∂r

(
rρ
√

∆γvr
)

+
1

r
∂θ
(
ργvθ

)
= 0. (4.61)

Acting with
∫ π

2
+θd

π
2
−θd dθ r

2 yields:

∂r

(
Σd < γvr >d

√
∆
)

= −2rργvθ
∣∣∣
θ=π

2
+θd
≈ −2rρdγdv

θ, (4.62)

where we have approximated ρ and γ by their the disk-average. In this equation
and in the following, vθ corresponds to the vertical drift velocity at the disk
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surfaces, i.e. θ = π/2± θd. By means of (4.13) and (4.14) we can write:

− ∂rṀd = 2∂rṀw = −4πrρdγdv
θ
d. (4.63)

Let us turn to the angular momentum equation for a moment:

ργvr
√

∆

r
∂rl =

$

µ0r

(
Br∂r

√
∆ +Bθ∂θ

)
Bϕ. (4.64)

l is the angular momentum per mass which is given by:

l = ẋϕ = $γvϕ = γ
$2

α
Ω̃. (4.65)

Br is neglected since the dominant term on the right-hand side of (4.64) is the

one containing Bθ (see Sections 4.1 and 4.3.1). Acting with
∫ π

2
+θd

π
2
−θd dθ r

2 yields:

− Ṁd

2πr
∂rld =

2$

µ0

BθBϕ. (4.66)

We have made use of the fact that, within the disk, Bθ is nearly independent of θ
on the right-hand side. In this equation and in the following, Bϕ corresponds to
the value of the toroidal field at the disk surfaces, i.e. θ = π/2± θd (we assume
that Bϕ is already very strong at this latitude). The solution for Bϕ is:

Bϕ = − 3µ0

16π

Ṁd

r2$

ld
Bθ
L = − 3µ0

16π

Ṁd

r2

γdv
ϕ
d

Bθ
L, (4.67)

L =
4

3

1

1− vϕd
2

c2

·

[
4
r2 − r3g

r
a2

$2
− 2

r2 − rrg
∆

+

+Ω̃−1
d

(
ω

3r2 + r2
ga

2

$2

(
1 +

vϕd
2

c2

)
− 5

4
rtr

1
4 r

5
4

Ωd
2

√
rgc

)]
. (4.68)

The next targets are the mass density in the disk, ρd, and in the transition layer,
ρw. In the case of ρd we just have to rearrange (4.14) to obtain:

ρd = − Ṁd

4πHd

√
∆γdvrd

. (4.69)

For the density in the TL one can invoke the stationarity condition for the toroidal
magnetic field:

γAv
ϕ
A =

Bϕ
d√

µ0ρw
= γwv

ϕ
w ⇔ ρw =

1

µ0

(
Bϕ
d

γwv
ϕ
w

)2

(4.70)
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We can also provide another expression for ρw using (4.15): Integration over
(4.63) from rB to r and using vrw (rB) = 0 yields:

Ṁw = −1

2

(
Ṁd − Ṁd (rB)

)
. (4.71)

Substituting into (4.15), our result for ρw becomes:

ρw =
Ṁd − Ṁd (rB)

4πHw

√
∆γwvrw

. (4.72)

The next quantity that we want to analyze is the vertical drift velocity vθ. Using
(4.13), (4.14), (4.15) and (4.63) we obtain:

2πrρdγdv
θ = −∂rṀw

≈ −Ṁw

r

= 2π
Hw

r

√
∆ρwγwv

r
w

⇔ vθ =
Hw

r

√
∆

r

ρw
ρd

γwv
r
w

γd
. (4.73)

Furthermore we can use (4.69) and (4.72) to substitute ρd and Ṁd, respectively,
to obtain:

vθ = −Hd

r

√
∆

r
vrd

4πHw

√
∆ρwγwv

r
w

Ṁd (rB) + 4πHw

√
∆ρwγwvrw

. (4.74)

4.3.3 The Vertical Structure of the Transition Layer

In this subsection we will focus on the TL, where the plasma is subject to extensive
centrifugal forces. Now we want to investigate what kind of forces are opposing
this collapse and how we can determine the geometrical thickness of the TL form
this. The vertical momentum equation contains all forces that let the TL collapse
or blow up:

0 = −∂θP + θγ2ρ

(
r2
ga

2

r2
vr2 − vϕ2

S2

)
− Bϕ

µ0

∂θB
ϕ +

Br

µ0

∂θ

(ω$
αc2

Eθ −Br
)

+

+
$

µ0r
Br∂r

(rω$
c2

Er +
r

α
Bθ
)

+

+
1

µ0c2

(
Eθ − ω$

α
Br
)(α

r
∂r (r$Er) + ∂θE

θ
)
, (4.75)

where the variable S was defined in (3.67). Looking at (4.75) reveals several
forces that could possibly oppose collapse:
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1. gas pressure −∂θPg/ρ

2. turbulent pressure −∂θPtur/ρ

3. magnetic pressure due to the toroidal magnetic field −Bϕ∂θ (Bϕ) /(µ0ρ)

4. pressure and tension due to the poloidal electromagnetic field

The gas pressure-term is of order cS
2 and thus can be neglected compared to the

centrifugal term that is of order vϕw
2: Already in the accretion disk the matter is

supersonic, hence there is no chance that gas pressure could oppose the collapse
of the super Keplerian transition layer.
Bϕ is the most dominant electromagnetic field component in the TL (see Section
4.3.1). We neglect all other electromagnetic terms. Further, we can drop the
vr2-term compared to vϕ2. vr can become highly relativistic at several gravita-
tional radii but the term is damped by a factor of order r−2 while S = O(1).
Approximating ∂θ by −r/Hw and θ ≈ Hw/r, we rewrite (3.57) as:(

r

Hw

)2(
Ptur
ρw

+
Bϕ2

2µ0ρw

)
= γ2

w

vϕw
2

S2
. (4.76)

Of the two remaining terms on the left-hand side, Ptur is most likely responsible
for opposing collapse. This is due to the fact that the toroidal magnetic field has
a turning point in the TL and to the high reconnection rate that we expect to
have there (Hujeirat, 2004). Writing Ptur/ρw = γw

2vtur
2, we then conclude that:

Hw

r
=
vtur
vϕw
S. (4.77)

This indicates that the TL is geometrically thin since it is unlikely that tur-
bulent motion exceeds the Keplerian velocity. For the TL to be stationary, the
amplification time scale tadv has to equal the dissipation time scale tdiss due to
reconnection. Inspecting (3.63) yields:

tamp =
Hw

αvϕw

Bϕ

Bθ
(4.78)

tdiss = Hw
2 γw
αηM

. (4.79)

Setting tamp = tdiss we obtain the following relation:

Bθ

Bϕ
=

ηM
Hwγwv

ϕ
w
. (4.80)

The magnetic diffusivity ηM , on the other hand, can be written as:

ηM = Hwvtur (Newton) → Hwγwvtur (General Relativity). (4.81)

(4.77⇒ ηM =
Hw

2

rS
γwv

ϕ
w. (4.82)
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Combining (4.80) and (4.82) yields:

Bθ

Bϕ
=
Hw

rS
(4.83)

Thus we have connected the fraction Bθ/Bϕ directly to the thickness of the TL.
Since Bθ/Bϕ � 1, as can be estimated by comparing the Alfv́en velocities (see
Section 4.3.1, page 71), we see that the TL is geometrically thin.

4.3.4 The Internal Energy

In this subsection we will derive the temperature profiles in the disk and TL from
the energy equation. It has been stated by Hujeirat (2004) that electrons and
ions have to be treated as a two-temperature flow in the TL. Due to the low
density, the time scale for energy exchange is slow compared to the dynamical
time scale. In the disk, on the other hand, the density is much higher implying
effective energy exchange between electrons and ions. Hence, we will use a one-
temperature description in the disk. The two equations of internal energy, (3.59)
and (3.60), are replaced by one single equation:

ρdγdv
r
d

√
∆

r
∂rEd = −Pd

r2
∂r

(
r
√

∆γdv
r
d

)
+ Λcon − Λsyn − ΛB − ΛC . (4.84)

The contribution of ohmic heating, ΛOhm, has been dropped since the plasma is
non-resistive in the disk. The main heating sources are adiabatic compression
and heat conduction. The electrons cool mainly by synchrotron emission. Due
to the Coulomb coupling this will also cool the ions in the disk. We assume that
heat conduction from the hot ions in the TL suffices to cover this loss of heat, i.e.

Λcon − Λsyn − ΛB − ΛC ≈ −Λcon + Λsyn ≈ 0. (4.85)

Then the only remaining source of heat is adiabatic compression. We rewrite the
internal energy per mass and pressure, respectively, as

Ed = CV Td (4.86)

Pd = (Γ− 1) ρdEd = (Γ− 1) ρdCV Td, (4.87)

where Γ, CV , Td correspond to adiabatic index, specific heat per mass and disk
temperature, respectively. Hence, we arrive at the differential equation:

∂rTd
Td

= − (Γ− 1)
∂r

(
r
√

∆γdv
r
d

)
r
√

∆γd.vrd
(4.88)

Integrating (4.88) from rtr to r leaves us with:

Td = Td(rtr)

(√
∆

∆(rtr)

r

rtr

∣∣∣∣∣ γdv
r
d

γd,trvrd,tr

∣∣∣∣∣
)1−Γ

. (4.89)
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Now we turn to the transition layer. The most dominant heating process there is
ohmic heating due to the large magnetic diffusivity. Electrons cool very effectively
by synchrotron emission. We will therefore equalize the corresponding heating
and cooling rates and neglect all other terms:

0 = ΛOhm − Λsyn. (4.90)

Novikov and Thorne (1973) have derived a relativistic expression for the cooling
rate by synchrotron emission:

Λsyn = Υ
feρ

mp

(
kT

mec2

)2
B2

m2
e

, (4.91)

where we have defined the constant Υ = 32παf
2~2/(µ0c). αf is the fine-structure

constant and fe is the fraction of unbound electrons to baryons. B is approx-
imated by Bϕ, the most dominant component of the magnetic field in the TL.
The relativistic expression for the heating rate ΛOhm is given by (see Section 3.2):

ΛOhm = µ0ηMj
ρjρ. (4.92)

Regarding the estimates we have made in Section 4.3.1 we can determine the
dominant contributions to ΛOhm from equations (3.49) to (3.52). Using (4.36)
and (4.37) we make the approximation:

µ0j
t ≈ 1

α

vrw
c

Bϕ

Hw

(4.93)

µ0j
r ≈

√
∆

r

Bϕ

Hw

(4.94)

µ0j
θ ≈ −

√
∆

r

Bϕ

r2
(4.95)

µ0j
ϕ ≈ 1

α

ω

c

vrw
c

Bϕ

Hw

. (4.96)

Regarding that Hw/r � 1 the square µ0
2j2 becomes:

µ0
2j2 = µ0

2
(
gttj

t2 + 2gtϕj
tjϕ + gϕϕj

ϕ2 + grrj
r2 + gθθj

θ2
)

≈
(
−v

r
w

2

c2
+ 1 +

∆

r2

Hw
2

r2

)
Bϕ2

Hw
2

≈
(

1− vrw
2

c2

)
Bϕ2

Hw
2
. (4.97)

Inserting (4.97) and (4.82) in (4.92) yields:

ΛOhm = ηM

(
1− vrw

2

c2

)
Bϕ2

µ0Hw
2

= γwv
ϕ
w

(
1− vrw

2

c2

)
Bϕ2

µ0rS
. (4.98)



4.3. CONSTRUCTING THE COMBINED SOLUTION 81

This leads to the energy equation:

γwv
ϕ
w

(
1− vrw

2

c2

)
Bϕ2

µ0rS
= Υfe

ρw
mp

(
kTe,w
mec2

)2(
Bϕ

me

)2

(4.99)

⇔ Te,w =
mec

2

k

√
mpm2

e

Υ

1

fe

1

rS
γw3vϕw

3

Bϕ2

(
1− vrw

2

c2

)
.

(4.100)

Turbulent dissipation heats the ions and electrons equally (Hujeirat, 2004). In
order to maintain stationarity, however, the toroidal magnetic field Bϕ has to
be advected on the same time scale it is dissipated into heat by reconnection.
Writing the internal energy of the ions as

Ei = CV Ti,w, (4.101)

we can now obtain typical heating time scales by setting theat = ρE/Λ. In the
case of reconnection this yields:

theat =
CV ρwTi,w

ΛOhm

. (4.102)

The advection time scale can be read off of (3.63):

tadv =
Hw

αvϕw

Bϕ

Bθ
. (4.103)

Inserting (4.83) into this equation yields:

tadv =
rS
αvϕw

. (4.104)

The ion temperature is then determined by:

theat = tadv ⇔ CV ρwTi,w
ΛOhm

=
rS
αvϕw

. (4.105)

Substituting ΛOhm and rearranging yields:

Ti,w =
γw

3vϕw
2

CV α

(
1− vrw

2

c2

)
. (4.106)

Now we have accomplished the aim of this chapter. In the last sections,
we derived profiles for the ten variables ρd, ρw, vrd, v

r
w, vθ, Bϕ, ηM , Td, Te,w

and Ti,w. In the next chapter we will recapitulate the results, we have just
obtained, and bring them into a form that is more convenient for later use. We
will give a discussion of the properties of this solution and apply it to the µQuasar
GRS1915+105.
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Chapter 5

Discussion of the Model and
Application to GRS1915+105

In the previous chapter we have introduced the model and presented a possible,
approximative solution to the GRMHD equations. In this chapter we will bring
the profiles in a more convenient form and apply the model to the µQuasar
GRS1915+105. Based on observational data we will try to further constrain
our parameter regime, namely the transition radius, the black hole spin and the
accretion rate. In turn we can make some estimates on the mass ejected in
outflows and jets.

5.1 Discussion of the Solution to the Model

Before we proceed to the discussion of the solution, we rewrite the results. The
form we have worked with is very compact but it is necessary to display the
magnitude of the corresponding variable and its dependence on the parameters
explicitly.
For completion we quote the results again in the form we have worked with so
far:

Ωd =

{ √
GM

(
r

5
4 r

1
4
tr + r

3
2
g a
)−1

, r ∈ [r∗, rtr]

ω , r < r∗
(5.1)

Ωw =
√
GM

(
r

5
4 r

1
4
B + r

3
2
g a
)−1

(5.2)

vϕd =

{
$
α

(Ωd − ω) , r ∈ [r∗, rtr]
0 , r < r∗

(5.3)

vϕw =
$

α
(Ωw − ω) (5.4)

83
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vrd = −

√√√√c2 − vϕd
2 − c2

γ2
d,tr

α2

α2
tr

Fd

(
c2 − vϕd

2

c2 − vϕK,tr
2

)2

(5.5)

γd = γd,tr
αtr
α

1√
Fd

c2 − vϕK,tr
2

c2 − vϕd
2 (5.6)

vrw =

√√√√c2 − vϕw2 − c2

γ2
w,B

α2

α2
B

Fw

(
c2 − vϕw2

c2 − vϕK,B
2

)2

(5.7)

γw = γw,B
αB
α

1√
Fw

c2 − vϕK,B
2

c2 − vϕw2 (5.8)

vθ =
Hw

r

√
∆

r

ρw
ρd

γwv
r
w

γd
(5.9)

Ṁ = 2
|Ṁw|
Ṁd

=
3

4

√
∆

r
LS γd

γw

vϕd
vϕw

vrw
vϕw

(5.10)

Bθ =
B0

$γdvrd
(5.11)

Bϕ = − 3µ0

16π

Ṁd

r2

γdv
ϕ
d

Bθ
L (5.12)

Hw =
Bθ

Bϕ
rS (5.13)

ηM =
H2
w

rS
γwv

ϕ
w (5.14)

ρd = − Ṁd

4πHd

√
∆γdvrd

(5.15)

ρw =
1

µ0

(
Bϕ

γwv
ϕ
w

)2

(5.16)

Td = Td(rtr)

(√
∆

∆(rtr)

r

rtr

∣∣∣∣∣ γdv
r
d

γd,trvrd,tr

∣∣∣∣∣
)1−Γ

(5.17)

Te,w =
mec

2

k

√
mpm2

e

Υ

1

fe

1

rS
γw3vϕw

3

Bϕ2

(
1− vrw

2

c2

)
(5.18)

Ti,w =
γw

3vϕw
2

CV α

(
1− vrw

2

c2

)
(5.19)

In these expressions we have used the auxiliary function Fd/w,S and L. They were
defined in (4.56), (4.57), (3.67) and (4.68), respectively, and will be reformulated
below. We have left out the profiles of the electric fields since they are of no
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further interest for the following discussion. They can be derived by means of
(3.64) and (3.65). The quantities depend on the six parameters: Ṁd, M , a, r,
rtr, rB. In order to reformulate these profiles we introduce the non-dimensional,
scaled variables:

x =
r

rg
, m =

M

6M�
, ṁ =

Ṁd

1017 g s−1
, (5.20)

where 1017 g s−1 = O(0.1LEdd/c
2) is a typical accretion rate of stellar mass black

holes. Further, we define the constants and auxiliary functions:

B0,2 =
B0

106G · crg
(= O(1− 10) for stellar systems) (5.21)

D = 1− 2

x
+
a2

x2
(5.22)

Fd =


given by (4.56) and (4.57) for
a = 0 and a > 0, respectively r ≥ r∗

Fd,∗ r < r∗

(5.23)

Fw =

{
given by (4.56) and (4.57) for
a = 0 and a > 0, respectively

(5.24)

Gd/w = Fd/w γtr/B−2αtr/B
−2

(
1−

vϕK,tr/B
2

c2

)−2

(5.25)

H2 = 102 · Hsd,tr

rtr
(5.26)

L =
4

3
· Vd−1 ·

[
4

(
1− a2

x3

)
W−1 − 2

(
1− 1

x

)
D−1 − (5.27)

− 5

24
m−1 xtr

1
4Od−1WTd−1 + 2ax−

7
4OdTd−1W−1

(
3 +

a2

x2

)
(2− Vd)−1

]
Od/w = xtr/B

1
4 + ax−

5
4 (5.28)

Qd,1 = 10 · γd
vrd
c

= 10 ·
(
Gd−1D−1WVd−1 − 1

) 1
2 (5.29)

S =

[
1 +

2a2

x3
W−1

((
1 +

a2

x2

)(
1 + (1− Vw)−1)− 2a

x
D

1
2 (1− Vw)−

1
2

)]− 1
2

(5.30)

T0 =
Tsd(rtr)

107K
(5.31)
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Td/w = 1− 2axtr/B
1
4x−

7
4 +

a2

x2
(5.32)

Vd/w = 1−
vϕd/w

2

c2
= 1− 1

36
m−2 x−

1
2 Od,w−2D−1 Td,w2 (5.33)

W = 1 +
a2

x2
+

2a2

x3
(5.34)

In terms of these variables, the solution can be reformulated to yield:

Ωd =

{
3.4 · 104s−1 ·m−1 x−

5
4 Od−1 , r ∈ [r∗, rtr]

6.8 · 104s−1 ·m−1 a x−3W−1 , r < r∗
(5.35)

Ωw = 3.4 · 104s−1 ·m−1 x−
5
4 Ow−1 (5.36)

vϕd
2

c2
=

{
2.8 · 10−2 ·m−2 x−

1
2 D−1Od−2 Td2 , r ∈ [r∗, rtr]

0 , r < r∗
(5.37)

vϕw
2

c2
= 2.8 · 10−2 ·m−2 x−

1
2 D−1Ow−2 Tw2 (5.38)

vrd
2

c2
= Vd − GdDW−1 Vd2 (5.39)

γd = Gd−
1
2 D−

1
2 W

1
2 Vd−1 (5.40)

vrw
2

c2
= Vw − GwDW−1 Vw2 (5.41)

γw = Gw−
1
2 D−

1
2 W

1
2 Vw−1 (5.42)

vθ

c
= 10−2 · H2DṀ

(
Vd − GdDW−1Vd2

) 1
2 (5.43)

Ṁ = 4.5 ·mx
1
4 S LD

3
2 Od−1Ow2 Td Tw−2 · (5.44)

·Gd−
1
2Gw

1
2Vd−1Vw

(
Vw − GwDW−1Vw2

) 1
2

Bθ = −107G · B0,2 x
−1W−

1
2Qd,1

−1 (5.45)

Bϕ = 4.6 · 107G · B0,2
−1 ṁm−3 x−

5
4 LW D−1Od−1 Td · (5.46)

·Gd−
1
2Vd−1Qd,1

Hw = 2.2 · 10−1 rg · B0,2
2 ṁ−1m3 x

5
4 S L−1W−

3
2 DOd Td−1 · (5.47)

·Gd
1
2VdQd,1−2
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ηM = 2.1 · 1014 cm
2

s
· B0,2

4 ṁ−2m6 x
5
4 S L−2W−

5
2 DOd2Ow−1 · (5.48)

·Td−2 Tw Gd Gw−
1
2 Vd2 Vw−1Qd,1−4

ρd = 6.7 · 10−4 g

cm3
· H2

−1 · ṁm−2x−2D−
1
2Qd,1−1

ρw = 6.9 · 10−6 g

cm3
· B0,2

−2 ṁ2m−4 x−2 L2WOd−2Ow2 Td2 Tw−2 · (5.49)

·Gd−1 GwVd−2Vw2Qd,12

Td = 107K · T0 ·

((
D
Dtr

) 1
2
(
x

xtr

)2

Qd,1
0.01 · c
−γd,trvrd,tr

)1−Γ

(5.50)

Te,w = 3.4 · 108K · B0,2 ṁ
−1mx

3
8 S−

1
2 L−1D−

1
2 W−

1
4 OdOw−

3
2 · (5.51)

·Td−1 Tw
3
2 Gd

1
2 Gw−

3
4 Vd Vw−

3
2 · Qd,1−1 ·

(
1− Vw + GwDW−1Vw2

)
Ti,w = 1.0 · 1011K ·m−2 x−

1
2 D−3W2Ow−2 Tw2 Gw−

3
2 Vw−3 · (5.52)

·
(
1− Vw + GwDW−1Vw2

)
In the derivation of this solution we have made use of several assumptions. First
we assumed that the vertical drift vθ is negligible as compared to the other velocity
components and second that the TL is geometrically thin, i.e. Hw/r < 1. Further,
we neglected magnetic fields in the radial momentum equation assuming that
the accretion disk is dominated by the gravitational pull of the central black
hole. Therefore we also have to verify that γdv

ϕ
d � Bθ/

√
µ0ρd. Since vϕd is

sub-Keplerian this guarantees that gravitational forces are dominant as well. In
Section 4.3.4 we have shown that the temperature of the electrons and the ions
in the TL may differ considerably. This was due to the fact that the time scale
for energy exchange is much longer than the dynamical time scale in the TL. We
justify this procedure by comparing Te,w and Ti,w. These assumptions are checked
considering several combinations that reasonably cover the parameter regime:

a = 0, 0.7, 0.998
M = 3M�, 3 · 108M�
Ṁ = 0.02, 0.95LEdd/c

2

rtr = 20 rg, 100 rg.

(5.53)

Hw/r depends weakly on a but strongly on M and Ṁ as can be seen from (5.47).
Maximal values of Hw/r are obtained for low values of these three parameters.
For a = 0 the accretion rate has to be greater than ≈ 0.03LEdd/c

2 if rtr = 20 rg
and greater than ≈ 0.25LEdd/c

2 if rtr = 100 rg to obtain Hw/r < 1 everywhere.
This indicates that rtr is unlikely to exceed 100 rg in typical situations since
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the model becomes inconsistent for most parameter values in this case. For
the other combinations of M and Ṁ the maximum value attained is around
Hw/r ≈ 10−1 − 10−2. vθ depends on Ṁ via the boundary condition Hsd,tr (see
Section 2.2). However, even for Ṁ ≈ LEdd/c

2 the ratios vθ/vϕ and vθ/vr achieve
10−2 − 10−3 maximum. The ratio of Alfvén velocity to orbital velocity satisfies

Bθ/
√
µ0ρd

γdv
ϕ
d

≈ 10−2 − 10−3 (5.54)

for all combinations. The ratio of the electron- to ion temperature in the TL sat-
isfies Te,w/Ti,w < 10−1 for all combinations. It decreases strongly with decreasing
radius. This is surprising since the two temperature flow in the TL was justified
by the magnitude of the energy exchange time scale. The ladder is much longer
in the TL since the density is much lower than in the disk. In the vicinity of
the central black hole, however, ρw increases strongly even exceeding ρd for high
accretion rates. This means that the plasma might not be tenuous throughout
the whole TL but the two-temperature description still remains valid.
We conclude that the model is self-consistent for reasonable values of a,M, Ṁ
and rtr well below 100 rg.

Finally, we plot of the profiles, presented in this section. We have chosen the
following values for the parameters:

M = 6M�

Ṁd = 1017g s−1 ≈ 0.1LEdd/c
2

a = 0.95 (5.55)

rB = rms

rtr = 40 rg.

The boundary values have been chosen to be:

vrd(rtr)/c = −1.28 · 10−1

Hd(rtr)/rtr = 1.79 · 10−3

ρd(rtr) = 9.24 · 10−7g cm−3

Td(rtr) = 1.36 · 107K.

(5.56)

The one-dimensional profiles correspond to θ = π/2 for the variables in the
disk and θ = π/2 + θd + δθ/2 or θ = π/2 + θd in the TL (depending on the
variable), respectively. Plots of two-dimensional distributions are presented as
well in order to get a better understanding of the model. In this case we have
changed from the coordinate θ to z = r cos θ. The distributions in the vertical
direction have been chosen mainly such that they are appropriate for illustration
purposes. In the case of the standard disk we had hydrostatic equilibrium in
the vertical direction implying a Gaussian distribution. Hydrostatic equilibrium
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seems problematic in the inner region. It might be applicable to the disk but
surely not to the TL. Hence, the detailed distributions will probably deviate
from a Gaussian distribution. Still it will suffice for illustration purposes since
we expect it to capture the qualitative behavior at least roughly. Correspondingly,
the functions are of the kind

e
− 1

2
z2

H2
d or e

− 1
2

(z−Hd−Hw/2)
2

(Hw/2)2 . (5.57)

These functions will be modulated and normalized depending on the variable. In
the case of the two-dimensional distribution of velocity and density, depicted in
Fig. 5.7, we have chosen the vertical profiles:

ρd(r, z) =

{
ρd(r) for z = 0
0 for |z| ≥ Hd

(5.58)

ρw(r, z) =

{
ρw(r) for |z| = Hd +Hw/2
0 for |z| /∈ [Hd, Hd +Hw]

(5.59)

vrd/w(r, z) ... the same as density (5.60)

vθ(r, z) =

{
±vθ(r) for z = ±Hd

0 for |z| ≤ 2Hd
(5.61)

Ω̃(r, z) =

{ Ω̃d(r) for z = 0

Ω̃w(r) for |z| = Hd +Hw/2
0 for |z| ≥ Hd +Hw.

(5.62)

The distributions of the magnetic field components (depicted in Fig. 5.8) emerge
from the ideal MHD equations together with the distributions of vrd and Ω̃. In the
case of Bθ the cutoff has been removed from (5.60) to prevent singular behavior.
Br is given by (4.23). The vertical distribution of Bϕ corresponds to Bϕ ∝ ∂θΩ
(see (3.63)). The magnetic field components read:

Br(r, z) =
z

H2
d

(
r2

√
∆
− r2

tr√
∆(rtr)

γdv
r
d

γd,trvrd,tr

)
Bθ(r, z) (5.63)

Bθ(r, z) = Bθ(r) e
1
2
z2

H2
d (5.64)

Bϕ(r, z) ∝ ∂z

(
e
− 1

2

(
z−Hd
Hw/2

−1
)2

+ e
− 1

2

(
z+Hd
Hw/2

+1
)2
)

(5.65)

Bϕ(r,±Hd) = ±Bϕ(r). (5.66)

At a given radius the poloidal field strongly increases with increasing |z| (exponen-
tially in this case since Bθ ∝ 1/vr). This is due to the assumption of stationarity
together with ideal MHD. In a time dependent case where the poloidal field is
homogeneous and vertical in the beginning, ~Bp(t0) = (0, Bθ

0), the infall of matter
drags the magnetic field lines towards the center. A radial component emerges
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and the magnetic field lines approach each other increasingly with increasing time
thus amplifying the magnetic field. Clearly this distribution becomes unphysical
for |z| � Hd but we limit ourselves to |z| = O(Hd). Additionally we have not
included magnetic reconnection in the poloidal component. Of course, if we did,
the poloidal field would be weakened in the TL.

Figure 5.1: The velocity components in the disk and transition layer

This plot shows the radial profiles of vrd, v
r
w, vϕd , vϕw, vϕK and vθ, corresponding to the radial-

and orbital velocity in the disk and TL and the Keplerian- and vertical velocity, respectively.
The ladder has been magnified 1000 times. Obviously vθ is much smaller than all other velocity
components.
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Figure 5.2: The density in the disk and transition layer

The density profiles ρd and ρw are displayed. Clearly the density in the TL is much lower than
in the disk. Hence, only a small percentage of matter is ejected in the jet. Approaching the
marginally stable orbit, ρw strongly increases. This is due to the strong increase of Bϕ for
r → rms. It is plausible, though, that most of the matter in this region is pushed into the black
hole. This is suggested by the proximity to the marginally stable orbit and the fact that the TL
is extremely thin in this region. Thus the incoming matter will be pushed towards the center.
Furthermore, the radial velocity is extremely low the innermost part of the in the TL (see Fig.
5.1). As a consequence the high density in this region will not effect to total massload of the
jet.
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Figure 5.3: The vertical and toroidal magnetic field in the disk and transition
layer

−Bϕ and Bθ are plotted. The ladder has been magnified 30 times. One can see that Bθ � −Bϕ

implying that the TL is geometrically thin, according to the previous assumption.
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Figure 5.4: The magnetic diffusivity in the transition layer

The magnetic diffusivity in the TL gives rise to reconnection thus heating the matter. In the
disk, on the other hand, ideal MHD is assumed.



94 CHAPTER 5. DISCUSSION AND APPLICATION

Figure 5.5: The relative thickness of the transition layer

Hw/r is plotted. On can see that the transition layer blows up with increasing radius but
remains geometrically thin in the inner region. For r > rtr the model can not be applied since
there is no transport of angular momentum from the disk. Reconnection ceases and a different
description of the flow is necessary.
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Figure 5.6: The temperature profiles in the disk and transition layer

The logarithmic profiles of the temperature in the disk and electron/ion temperatures in the
TL are plotted. Clearly the TL is much hotter than the disk since it is intensively heated by
reconnection. Electrons and ions have very different temperatures in the inner region. At larger
radii the matter is supposed to cool thus settling to a one temperature flow.
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Figure 5.7: Two-dimensional distribution of the density, poloidal- and angular
velocity

This graphic shows the velocity distribution plotted over the color coded density distribution.
Solid isolines of Ω̃ are drawn but the actual values have been omitted so the graphic will not
become overloaded. The poloidal velocity distribution (vr, vθ) is drawn with arrows, given in
units of c but magnified by a factor of 5. One can clearly see that Ω̃ achieves higher values in
the TL than in the disk for a given radius. The outflowing wind is very tenuous compared to
the disk while its velocity becomes comparable to the speed of light very fast, rendering the
matter highly energetic.
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Figure 5.8: Two-dimensional distribution of the poloidal- and toroidal magnetic
field

This plot shows the distribution of the magnetic field components. The direction of the poloidal
field lines is indicated by normalized arrows along solid lines of constant A3, where A = Aaea is
the four-vector potential. Dashed lines mark curves of constant | ~Bp|, i.e. constant strength of
the total poloidal field ~Bp = (Br, Bθ). One should notice that the poloidal field changes from
being predominantly vertical to radial with decreasing radius. Within the equatorial plane,
though, Br = 0 provided that there has been no radial component to begin with (which is
assumed). The toroidal field Bϕ is color coded. It varies strongly with z, especially in the
immediate vicinity of the black hole.
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5.2 Application of the model to GRS1915+105

In this section we discuss the application of the new model to the µQuasar
GRS1915+105 which was already introduced in Section 1.3. Now we can com-
bine observational data with the parameters of the model and make in turn some
estimates on the parameters of the system.
In this section we discuss three points:

• the magnitude of the transition radius rtr

• the spin of the black hole in GRS1915+105

• the predicted outflow rate during flaring states (A ↔ C)

The magnitude of rtr can be estimated by means of the light curves obtained
from GRS1915+105. We adopt an interpretation similar to that of Belloni et al.
(2000), namely that during state A and B the accretion disk is well described by a
standard α-disk all the way down to the marginally stable orbit. During state C,
however, the accretion disk is only well described by an α-disk for r > rtr. Interior
to rtr the disk can be described by the model proposed in this work. This means
that the disk is threaded by large-scale, super equipartition, poloidal magnetic
fields in this region. The magnetic fields suppress the generation of turbulence
and subsequently prevent viscous dissipation. Therefore the innermost region is
much fainter than the α-disk model predicts. As a consequence the disk appears
to be truncated. This is analogous to sunspots that appear to be black compared
to their bright surrounding.
This assumption allows us to make an estimate on the magnitude of rtr. There are
phases where GRS1915+105 displays oscillations between state A and C (class θ
of Belloni et al. (2000)). A sample of the corresponding light curve is shown in
Fig. 5.9. We assume that the region dominated by large-scale, poloidal magnetic
fields reaches up to a maximum radius rtr,max during the low state. When the
intensity is rising, rtr starts decreasing, eventually reaching the radius of marginal
stability rms. The whole flow is described by the standard α-disk in this case.
Dynamo action in the α-disk in combination with the strong gravitational field
then produces large-scale magnetic fields that significantly change the dynamics
of the flow as mentioned above and the α-disk becomes truncated at rtr,max again.
The extension of the α-disk region happens by a viscous flow that starts spiraling
inwards from rtr,max on the time scale:

tvis =
r2

ν
. (5.67)

Since the concerned region lies in the vicinity of a black hole, we apply the
relativistic generalization of the profiles obtained in Section 2.2. Changing to the



5.2. APPLICATION OF THE MODEL TO GRS1915+105 99

Figure 5.9: Class θ light curve of GRS1915+105

GRS1915+105 remains in state C for ≈ 120 s (low luminosity). Then follows a phase that lasts
for ≈ 800 s where the source makes a transition into state A: the luminosity has a sharp peak
and then rises towards a maximum.
Credits: Image Belloni et al. (2000), data from observations with RXTE

variables x,m, ṁ, inserting tvis ≈ 800 s, m = 14, ṁ ≈ 11 (accretion rate during
quiescence, see 1.3, page 27) and rearranging yields:

x
7
2
BNT 7DNT 2ENT 2

ANT 4QNT 2
= 8.3 · 106 α. (5.68)

The auxiliary functions on the left-hand side were defined in Novikov and Thorne
(1973) and are quoted in appendix A. The solution of this equation is presented
as a function of α and a in Table 5.1. If α < 10−4 then rtr would take values
around or even below the marginally stable orbit. Therefore we have taken α ∈
[0.0001, 1]. Since rtr extends up to ≈ 100 rg we also have to check whether
the inner solution of the standard disk applies indeed. The radii rm−i where
the transition between the middle- and inner region occurs are solutions of the
equation:

x ·
(
BNT 36DNT 8ENT 10

ANT 20QNT 16

) 1
21

= 102.7 · α
2
21 . (5.69)
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rtr/rg rm−i/rg

α a = 0 a = 0.7 a = 0.998 a = 0 a = 0.7 a = 0.998

0.0001 < rms 4.3 5.3 40 40 41
0.0005 10 8.7 9.3 47 47 48
0.001 11 11 12 50 51 51
0.005 18 19 19 59 59 60
0.01 23 24 24 63 64 64
0.05 38 38 39 74 75 75
0.1 47 47 48 79 80 81
0.5 75 76 76 93 94 94
1 92 93 93 100 100 101

Table 5.1: rtr/rg and rm−i/rg as a function of α and a

rtr and rm−i depend only weakly on a and remain below ≈ 100 rg provided that α < 1. If α
were even smaller than 10−4, then rtr would be around or even below the marginally stable
orbit rms. One can see that in every case rm−i is larger than rtr. This justifies the application
of the inner standard disk solution.

The results are presented in Table 5.1 as well. The solutions to equations (5.68)
and (5.69) are insensitive to the black hole spin. Based on these results we can
infer that rtr < 100 rg (in agreement with what we have found in Section 5.1). It
should be noted that our interpretation of the light curves uses a sample from a
different class than that used by Belloni et al. (1997a).
Now we can turn to the question of the black hole spin. In our model the wind’s
velocity, temperature and strength of the advected, toroidal magnetic field depend
on a and rtr. The spin a determines the maximum depth of the potential well
that plasma can escape from. This is because the minimal radius rB of the inner
boundary of the TL is given by rms which is a decreasing function of a. rtr, on the
other hand, determines how much rotational energy the wind is supplied with.
In the TL the plasma has the total energy per mass:

E = Etherm + Ekin + Emag, (5.70)

where Etherm, Ekin, Emag correspond to the thermal-, bulk kinetic- and magnetic
energy per mass, respectively. E(rtr) = Etr is the energy per mass inherent in
an annulus of plasma at rtr that is carried out of the inner region - possibly to
infinity. However, the energy of such an annulus of plasma is not necessarily
conserved during its propagation. It might well be that a fraction of the energy
is dissipated due to processes that collimate the wind into a jet on larger length
scales. Other sources of dissipation might be internal shocks or interaction within
the jet-plasma and with the surrounding medium. However, we do not want to
go into the details of jet propagation but limit ourselves to a rough estimate.
Therefore we assume that the total energy of the plasma is indeed conserved
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exterior to rtr:
Etr = E∞. (5.71)

Etherm is dominated by virial-hot ions. Ions are poor radiators and cool mainly by
adiabatic expansion. Hence we expect the thermal energy to be roughly conserved
by itself: Etherm,tr ≈ Etherm,∞. In this case (5.71) reduces to:

Ekin,tr + Emag,tr = Ekin,∞ + Emag,∞. (5.72)

The expressions for the bulk-kinetic- and magnetic energy per mass in the TL
are:

Ekin = −ẋt,wc = −gttṫwc2 − gtϕϕ̇wc = γwαc
2 + ωlw (5.73)

Emag =
Bw

2

2µ0ρw
≈ Bϕ2

2µ0ρw
=

1

2
γw

2vϕw
2, (5.74)

where we have approximated the magnetic field in the TL by its most dominant
component Bϕ. Only a part of the toroidal field is dissipated in the TL while the
rest is advected outwards, i.e. Bϕ = Bϕ

diss +Bϕ
adv. Their ratio is given by:

Bϕ
diss

Bϕ
adv

=
tadv
tdiss

=
r√
∆

1

S
vϕw
vrw
, (5.75)

where the time scales tdiss, tadv can be inferred from (3.63). Hence the bulk kinetic-
and magnetic energy per mass that is actually advected in the wind becomes:

Ew = γwαc
2 + ωlw +

1
2
γw

2vϕw
2

1 + r√
∆

1
S
vϕw
vrw

, (5.76)

where l = ẋϕ = $2Ω̃/α is the angular momentum per unit mass that we already
worked with.
According to Greiner (2001) the ejecta of GRS1915+105 propagate with vbulk =
0.92 c. Fender et al. (1999); Dhawan et al. (2000) have derived a velocity of 0.98 c.
Yet, it is unclear whether the higher value is due to actual faster propagation of
the jet or to misinterpretation of the measurement. The motion of the ejecta is
consistent with a ballistic propagation.
Mirabel et al. (1998) reported on the ejection of plasma clouds in 1997 September
9. The clouds expand with ≈ 0.2 c, i.e. after 15min (the time of observation)
they have dimension L ≈ 5 · 1012cm. The magnetic field strength is estimated to
Bcl = 16G corresponding to equipartition with 5 · 1039erg energy in relativistic
electrons assuming a representative Lorentz factor of about 103. The bulk kinetic-
and magnetic energy per mass of a typical plasma cloud are then of the order:

Ecl = γbulkc
2 +

Bcl
2

2µ0

·
4π
3
L3

Mcl

≈
{

3.0 · 1021 erg g−1 , vbulk = 0.92 c
5.2 · 1021 erg g−1 , vbulk = 0.98 c.

(5.77)
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rtr/rg a Ṁ0,tr in %

3 0.9987 4.6
3.5 0.9982 5.3
4 0.9977 5.8

4.5 0.9973 6.2
5 0.9969 6.5

6.25 0.9960 7.2
7.5 0.9953 7.6
8.75 0.9947 7.9
10 0.9942 8.1
12 0.9936 8.4

rtr/rg a Ṁ0,tr in %

14.5 0.9930 8.6
17 0.9926 8.8
20 0.9921 8.9
30 0.9912 9.1
40 0.9906 9.1
50 0.9902 9.1
60 0.9899 9.1
70 0.9897 9.1
80 0.9896 9.1
90 0.9894 9.1

Table 5.2: a and Ṁ0,tr for vbulk = 0.92 c.

This table displays combinations of a, rtr that satisfy Ew = Ecl and rtr < 100 rg. Additionally,
the relative outflow rate Ṁ0 is given. It is obvious that only a rapidly rotating black hole is
consistent with observations. rtr < 3.5 rg implies a > 0.9982 which is the maximum black hole
spin derived by Thorne (1974).

Setting rB = rms we can find a suitable combination of a and rtr that satisfies
Ecl = Ew. The results are displayed in Table 5.2. They are only consistent with a
nearly maximally rotating black hole (a > 0.989), unless rtr greatly exceeds 100 rg
implying α � 1. This is in agreement with the very small value of the minimal
inner disk radius of ≈ 20 km. If we let rtr < 300 km ≈ 14.5 rg as indicated by
observational data (Belloni et al., 1997a) we even obtain a > 0.9930.
In appendix B we present additional data for vbulk = 0.94, 0.96, 0.98 c. This
should account for the possibility that the ejecta are indeed propagating with
vbulk > 0.92 c. One can observe that, if rtr decreases, a has to increase in order
to obtain the observed velocity. Thus if rtr drops below a certain value, a has
to be larger than 0.9982. It should be noted at this point that the matter and
radiation that a black hole swallows from its surrounding accretion disk should
spin it up until it eventually rotates at maximum rate. Thorne (1974) showed,
however, that the radiation from the disk exerts a counter-torque which prevents
the black hole from reaching a = 1. In the limiting state it spins with a = 0.9982.
It is not clear whether this upper limit on the Kerr-parameter applies strictly to
GRS1915+105. The system spends a large fraction of its time in a state where
the inner disk radiates very poorly. On the other hand, in our model the accreted
disk matter has lost a large fraction of its rotational energy when it passes the
last stable orbit and magnetic fields exert an additional counter-torque on the
black hole through frame-dragging. If the limit derived by Thorne (1974) is to be
taken seriously, we can put a lower limit to rtr: vbulk/c = (0.92, 0.94, 0.96, 0.98)
yields rtr/rg ≥ (3.5, 4.5, 5, 17), respectively. Since 14.5 rg is the maximum value
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observed for rtr this excludes propagation with 0.98 c.
We turn to the outflow rate of GRS1915+105. In our model the outflow of
relativistic mass is given by (4.15). One can see from (4.10)-(4.12) that the flow
of rest-mass is approximately given by:

Ṁ0 ≈ Ṁ · α
γ
. (5.78)

Hence, we modify (4.15) by:

|Ṁ0,w| ≈
α

γw
· 2π
√

∆Hwρwγwv
r
w (5.79)

⇒ Ṁ0 =
α

γw
Ṁ = 2

|Ṁ0,w|
Ṁd

, (5.80)

where the factor of 2 in (5.80) accounts for the fact that the ejections are two-
sided. |Ṁ0(rtr) · Ṁd| corresponds to the amount of rest-mass per unit coordinate
time that exits the TL above and below the accretion disk and contributes to the
detected ejecta.
Mirabel et al. (1998) derived a minimum mass of Mcl = 1019g for the plasma
clouds provided that they consist of equal numbers of electrons and protons. The
ejection events last for ≈ 10min. Taking into account that two clouds are ejected
in opposite directions, this corresponds to 2 Ṁcl ≈ 3.3 · 1016g s−1 or ≈ 3% of the
accretion rate (Ṁd ≈ 1.1 ·1018g s−1, see Belloni et al., 1997b). From Table 5.2 we
can see that the outflow rate, consistent with observation, ranges from 5.3−8.6%
corresponding to a mass of 1.7− 2.8 · 1019g for the clouds. This is in good agree-
ment with the order of magnitude estimate based on observational data.

We summarize the results of this section as follows:

0.9930 ≤ a ≤ 0.9982
3.5 rg ≤ rtr ≤ 14.5 rg
5.3% ≤ Ṁ0 ≤ 8.6%

(5.81)

The proceeding in this section and the results we have obtained show that the
model fits to observational data and allows for estimates that fall in the correct
order of magnitude.

It should be noted that the steady jets of GRS1915+105 would have been the
ideal object for an application of the model. These are expected to occur dur-
ing the long periods where the source remains solely in state C. Unfortunately
there is not enough observational data on steady jets, so we had to settle for
the mini ejections during flaring states. The latter occur on timescales of 10min
which is much longer than any relevant time scale in the TL (tdyn, tadv, tamp, tdiss).
As a consequence, the stationarity approximation is still valid during the mini
ejections.
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Summary and Conclusions

In this diploma thesis a new model for the formation and acceleration of ultra-
relativistic jets has been presented, in which black hole-disk-jet interactions within
the context of general relativity and in combination with the two-temperature
plasma-description are taken into account.
In order to make the reader familiar with the physics of accretion, the New-
tonian MHD equations and the standard α-disk model have been introduced.
Subsequently the model has been derived from the GRMHD equations governing
stationary, axisymmetric flows. The self-consistency of the model has been veri-
fied and the results visualized. It has been found that the geometrical thinness
of the transition layer is not necessarily given for all parameter values which puts
restrictions on the validity of the model. Further it was found that electrons and
ions have indeed very different temperatures in the transition layer which justifies
the two temperature description. This was even found to be valid when the flow
in the transition layer is not tenuous.
Thereafter the model has been applied to the µQuasar GRS1915+105. Obser-
vational data and interpretation of the light curves have put restrictions on
the free parameters of the model. According to the model, the black hole in
GRS1915+105 has been found to be nearly in maximal rotation (a ≥ 0.9930).
Further, the predicted outflow rate in the transition layer yields the right order
of magnitude for the mass of the ejecta.
For several decades the formation and acceleration of jets has been among the
great unresolved problems in astrophysics. The model presented in this work
appears to be the answer to many questions concerned with astrophysical jets.
Its application to GRS1915+105 has shown that it is capable of reproducing ob-
servational data and is thus a serious candidate to explain the formation of jets
around compact objects. The model allows for a deeper understanding of the
subject and its future application might yield even further insights.

In the future we intend to modify the model to include time-dependent and
sophisticated radiative magnetohydrodynamic effects, relevant for studying the
very fast quasi-periodic oscillations considered to be connected to the accretion
of matter as it crosses the event horizon of accreting black holes or as it shocks
the surface of neutron stars. However, regarding the complexity of the problem



a pure analytical treatment seems inappropriate and numerical assistance will
be needed. Simulations of this kind have been performed by e.g. Hujeirat and
Camenzind (2000b); Hujeirat et al. (2002) and have led to the formulation of
the TDAT model which in turn led to the formulation of this model. The large
variety of time scales in accretion flows around compact objects is a great obstacle
for standard GRMHD codes, though. The implicit solver GR-I-RMHD (see e.g.
Hujeirat et al., 2008, 2009) is certainly the optimal solver for this purpose, due
to its remarkable robustness and unconditional numerical stability in addition to
its capability of dealing with multi-temperature and dissipative plasmas.



Appendix A

Auxiliary Functions of the
relativistic Standard Disk

We quote the auxiliary functions that we used in Section 5.2. They were defined
by Novikov and Thorne (1973); Page and Thorne (1974) as:

ANT = 1 +
a2

y4
+

2a2

y6
(A.1)

BNT = 1 +
a

y3
(A.2)

CNT = 1− 3

y2
+

2a

y3
(A.3)

DNT = 1− 2

y
+
a2

y2
(A.4)

ENT = 1 +
4a2

y2
− 4a2

y3
+

3a4

y4
(A.5)

QNT =
BNT
CNT

1
2y
·

(
y − yms +

3

2
log

y

yms
− 3(y − a)2

y1(y1 − y2)(y1 − y3)
·

· log
y − y1

yms − y1

− 3(y2 − a)2

y2(y2 − y1)(y2 − y3)
log

y − y2

yms − y2

−

− 3(y3 − a)2

y3(y3 − y1)(y3 − y2)
log

y − y3

yms − y3

)
, (A.6)
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where a is the non-dimensional Kerr-parameter and

y =

√
r

rg
(A.7)

yms =

√
rms
rg

(A.8)

y1 = 2 cos

(
1

3
arccos(a)− π

3

)
(A.9)

y2 = 2 cos

(
1

3
arccos(a) +

π

3

)
(A.10)

y3 = −2 cos

(
1

3
arccos(a)

)
. (A.11)

rms and rg correspond to the radius of the marginally stable orbit and the gravi-
tational radius, respectively. y1, y2, y3 are the roots of the equation

y3 − 3y + 2a = 0. (A.12)



Appendix B

Additional Data for
GRS1915+105

We present further results for a, rtr and M0,tr that satisfy Ew = Ecl. Here we
have taken the bulk velocity of the ejecta to be 0.94, 0.96 and 0.98 c, respectively.
See Section 5.2 for details.

rtr/rg a M0,tr in %

3 0.9990 2.4
3.5 0.9986 2.9
4 0.9983 3.3

4.5 0.9979 3.7
5 0.9976 3.9

6.25 0.9970 4.5
7.5 0.9964 4.9
8.75 0.9960 5.2
10 0.9957 5.5
12 0.9952 5.8

rtr/rg a M0,tr in %

14.5 0.9948 6.1
17 0.9945 6.2
20 0.9941 6.4
30 0.9935 6.7
40 0.9931 6.8
50 0.9928 6.9
60 0.9926 7.0
70 0.9925 7.0
80 0.9924 7.0
90 0.9923 7.0

Table B.1: a and M0,tr for vbulk = 0.94 c.

109



110 APPENDIX B. ADDITIONAL DATA FOR GRS1915+105

rtr/rg a M0,tr in %

3 0.9993 1.9
3.5 0.9991 2.3
4 0.9988 2.6

4.5 0.9986 2.9
5 0.9984 3.1

6.25 0.9980 3.5
7.5 0.9976 3.8
8.75 0.9973 4.1
10 0.9971 4.3
12 0.9968 4.5

rtr/rg a M0,tr in %

14.5 0.9966 4.6
17 0.9963 4.8
20 0.9961 4.9
30 0.9957 5.1
40 0.9955 5.2
50 0.9953 5.2
60 0.9952 5.2
70 0.9952 5.2
80 0.9951 5.2
90 0.9950 5.2

Table B.2: a and M0,tr for vbulk = 0.96 c.

rtr/rg a M0,tr in %

3 0.9997 1.3
3.5 0.9995 1.5
4 0.9994 1.7

4.5 0.9993 1.9
5 0.9992 2.0

6.25 0.9990 2.3
7.5 0.9988 2.5
8.75 0.9987 2.6
10 0.9985 2.7
12 0.9984 2.8

rtr/rg a M0,tr in %

14.5 0.9983 2.9
17 0.9982 3.0
20 0.9981 3.0
30 0.9979 3.1
40 0.9978 3.1
50 0.9978 3.1
60 0.9977 3.1
70 0.9977 3.1
80 0.9977 3.1
90 0.9977 3.1

Table B.3: a and M0,tr for vbulk = 0.98 c.



Appendix C

Synchrotron Emission

Relativistic jets are usually detected by their radio emission which is generally
interpreted as synchrotron radiation. This indicates the importance of magnetic
fields in the physics of the formation, collimation and propagation of jets. Syn-
chrotron emission is the main cooling process of the electrons in our model. Hence,
it is useful to have some basic knowledge about it. Here we give just a very short
review (see e.g. Novikov and Thorne, 1973, for a more detailed treatment).
Consider an electron in motion relative to an external magnetic field. The four-
acceleration is given by the Lorentz force per mass:

(aν) =

(
at

~a

)
=

d2

dτ 2

(
ct
~x

)
=

(
0

− e
me
γ d~x
dt
× ~B

)
= − e

me

(ẋµF
µν) , (C.1)

where e,me, τ, γ = dt/dτ =
√

1− ~v2/c2
−1

are the proton charge, electron mass,
proper time and Lorentz factor, respectively. The zeroth component of the four-
acceleration equals zero since there are no electric fields involved. One obtains
the radiated power by deriving the electromagnetic field of a moved charge then
setting:

dP = ~R2~n~SdΩ, (C.2)

where Si = T ti = F iρF t
ρ is the Poynting vector, ~R the distance vector from the

particle to the observer and ~n = ~R/|~R|. The leading term is the Lorentz-invariant
expression (Novikov and Thorne, 1973):

P =
2

3

α~
c2
aµa

µ, (C.3)

where α = e2/(4πε0~c) is the fine structure constant. In this case the radiated
power becomes:

P =
8π

3

α2~2

µ0c

(
γ
v⊥
c

)2 B2

me
2

= 1.59 · 10−7erg s−1 · γ2
(v⊥
c

)2

B2, (C.4)
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where v⊥ is the velocity component perpendicular to B. One will be interested
in the radiated power per mass or emissivity ε:

ε =
fe
mp

〈P 〉 , (C.5)

where fe and mp correspond to the fraction of unbound electrons to baryons and
the proton mass, respectively. 〈(·)〉 denotes the Maxwell-Boltzmann average. It
is defined by:

〈(·)〉 =

∫
d3p (·) e−E/kT∫
d3p e−E/kT

. (C.6)

In the nonrelativistic limit and in the ultrarelativistic limit, we obtain

ε = 8π
α2~2

µ0c

fe
mp

kT

mec2

B2

me
2

= 4.80 · 10−7 erg s−1 g−1 · feTB2 (C.7)

ε = 32π
α2~2

µ0c

fe
mp

(
kT

mec2

)2
B2

me
2

= 3.24 · 104 erg s−1 g−1 · feT10
2B2, (C.8)

respectively, where T10 = T/1010K. In the nonrelativistic case, cyclotron ra-
diation, the spectrum is ideally monochromatic. In reality, though, it will be
smeared around a maximum at the cyclotron frequency:

νcyc =
eB

2πme

= 2.79 · 1010Hz ·B. (C.9)

In the ultrarelativistic limit, synchrotron radiation, the spectrum is rather broad
and peaks at:

νpeak ≈ 4
eB

me

(
kT

mec2

)2

= 2.00 · 1012Hz · T10
2B. (C.10)
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L. F. Rodŕıguez and I. F. Mirabel. Repeated Relativistic Ejections in GRS
1915+105. ApJ, 511:398–404, January 1999. doi: 10.1086/306642.

B. J. Sams, A. Eckart, and R. Sunyaev. Near-infrared jets in the Galactic micro-
quasar GRS1915+105. Nature, 382:47–49, July 1996. doi: 10.1038/382047a0.

N. I. Shakura and R. A. Sunyaev. Black holes in binary systems. Observational
appearance. A&A, 24:337–355, 1973.

F. Shu, J. Najita, E. Ostriker, F. Wilkin, S. Ruden, and S. Lizano. Magneto-
centrifugally driven flows from young stars and disks. 1: A generalized model.
ApJ, 429:781–796, July 1994. doi: 10.1086/174363.

K. S. Thorne. Disk-Accretion onto a Black Hole. II. Evolution of the Hole. ApJ,
191:507–520, July 1974. doi: 10.1086/152991.



BIBLIOGRAPHY 121

A. Unsöld and B. Baschek. Der neue Kosmos. Einführung in die Astronomie und
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